Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)Đk:\(x\ge\frac{3}{2}\)
\(pt\Leftrightarrow3-x=-\sqrt{2x-3}\)
Bình phương 2 vế ta có:
\(\left(3-x\right)^2=\left(-\sqrt{2x-3}\right)^2\)
\(\Leftrightarrow x^2-6x+9=2x-3\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=6\end{array}\right.\).Thay vào thấy x=2 ko thỏa mãn
Vậy x=6
b)Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
Bình phương 2 vế của pt ta có:
\(\left(\sqrt{x-1}\right)^2=\left(\sqrt{3x-2}+\sqrt{5x-1}\right)^2\)
\(\Leftrightarrow x-1=\left(3x-2\right)+\left(5x-1\right)+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow2-7x=2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
Bình phương 2 vế của pt ta có:
\(\left(2-7x\right)^2=\left[2\sqrt{\left(3x-2\right)\left(5x-1\right)}\right]^2\)
\(\Leftrightarrow49x^2-28x+4=60x^2-52x+8\)
\(\Leftrightarrow-11x^2+24x-4=0\)
\(\Leftrightarrow\left(2-x\right)\left(11x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{11}\end{array}\right.\) (Loại)
Vậy pt vô nghiệm
a) ĐKXĐ: 1\(\le x\le7\)
phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)
Vậy S={5,4} là tập nghiệm của phương trình
b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)
=> z^2-y^2=x^2-3x+2
pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0
đến đó tự làm tự đặt dkxd
\(b.\sqrt[3]{x-17}+\sqrt{x+8}=5\) \(\left(ĐK:x\ge-8\right)\)
Đặt: \(a=\sqrt[3]{x-17},b=\sqrt{x+8}\)
\(\Rightarrow x-17=a^3,x+8=b^2\)
Khi đó:
\(\left\{{}\begin{matrix}a+b=5\\a^3-b^2=x-17-x-8=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\a^3-b^2=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)^3-b^2=-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-14b^2+75b-150=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-5b^2-9b^2+45b+30b-150=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2\left(b-5\right)-9b\left(b-5\right)+30\left(b-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-5\right)\left(b^2-9b+30\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left[{}\begin{matrix}b=5\\b^2-9b+30=\left(b-\dfrac{9}{2}\right)^2+\dfrac{39}{4}=0\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
Thế vào ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[3]{x-17}=0\\\sqrt{x+8}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-17=0\\x+8=25\end{matrix}\right.\) \(\Leftrightarrow x=17\left(n\right)\)
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(a.\sqrt[3]{2x-1}=3\)
\(\Leftrightarrow2x-1=27\)
\(\Leftrightarrow x=14\)
\(b.\sqrt[3]{x-5}=0,9\)
\(\Leftrightarrow x-5=0,729\)
\(\Leftrightarrow x=5,729\)
\(c.\sqrt[3]{x^2-2x+28}=3\)
\(\Leftrightarrow x^2-2x+28=27\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)
\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)
Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)
\(\Rightarrow8x^2-27x-18.x.5=125\)
\(\Leftrightarrow8x^2-117x-125=0\)
\(\Leftrightarrow8x^2+8x-125x-125=0\)
\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)
Lời giải:
a) ĐK: $x\geq \frac{1}{2}$
PT $\Rightarrow 2x-1=(\sqrt{2}-1)^2=3-2\sqrt{2}$
$\Leftrightarrow 2x=4-2\sqrt{2}$
$\Leftrightarrow x=2-\sqrt{2}$ (thỏa mãn)
Vậy.........
b) ĐK: $x\geq \frac{-11}{3}$
PT $\Rightarrow 3x+11=(3+\sqrt{2})^2=11+6\sqrt{2}$
$\Leftrightarrow x=2\sqrt{2}$ (thỏa mãn)
Vậy.........
c)
ĐK: $x\geq -5$
Ta thấy: $\sqrt{x+5}\geq 0$ với mọi $x\geq -5$, mà $\sqrt{3}-2< 0$ nên PT vô nghiệm.
d)
ĐK: $x\geq -38$
PT $\Rightarrow x+38=(3+\sqrt{5})^2=14+6\sqrt{5}$
$\Leftrightarrow x=6\sqrt{5}-24$ (thỏa mãn)
Vậy........
\(a,\sqrt{2-x}+2x=3\)
\(\Rightarrow\sqrt{2-x}=3-2x\)
\(\Rightarrow2-x=9-12x+4x^2\)
\(\Rightarrow4x^2-11x+7=0\)
\(\Rightarrow4x\left(x-1\right)-7\left(x-1\right)=0\)
\(\Rightarrow\left(4x-7\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{4}\\x=1\end{cases}}}\)