Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2-x+3x-1=0\)
\(\Leftrightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
b)
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
a, \(3x^2+2x-1=0\)
\(\Rightarrow3x^2-x+3x-1=0\)
\(\Rightarrow\left(3x^2-x\right)+\left(3x-1\right)=0\)
\(\Rightarrow x.\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right).\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=1\\x=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
Vậy......
b, \(x^2-5x+6=0\)
\(\Rightarrow x^2-3x-2x+6=0\)
\(\Rightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)
\(\Rightarrow x.\left(x-3\right)-2.\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x-2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy......
Chúc bạn học tốt!!!
\(1.a.\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\\\Leftrightarrow 4x-3=x-12\\ \Leftrightarrow4x-x=3-12\\\Leftrightarrow 3x=-9\\ \Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3\right\}\)
\(b.\left(3x-1\right)\left(x-5\right)=\left(3x-1\right)\left(x+2\right)\\\Leftrightarrow x-5=x+2\\ \Leftrightarrow x-x=5+2\\ \Leftrightarrow0=7\left(sai\right)\)
\(\Rightarrow\) Vô nghĩa (Vô nghiệm)
\(c.x^2-5x+6=0\\\Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Rightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;2\right\}\)
a, \(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
<=> \(\left(2x^2+1\right)\left(4x-3\right)-\left(2x^2+1\right)\left(x-12\right)=0\)
<=> \(\left(2x^2+1\right).\left(4x-3-x+12\right)=0\)
=> \(2x^2+1=0\) hoặc 3x + 9 = 0
=> \(2x^2=-1\) 3x = -9
=> \(x^2=\frac{-1}{2}\) ( vô lý ) x = -3
vậy phương trình có no S = -3
b , ( 3x -1) (2x - 5) = (3x - 1)(x +2)
=> (3x -1) ( 2x - 5) - (3x - 1)(x + 2)=0
=> ( 3x -1 ) ( 2x - 5 - x - 2) = 0
=> 3x - 1 = 0 và x - 7 = 0
x = \(\frac{-1}{3}\) x = 7
c, \(x^2-5x+6=0=>x^2-3x-2x+6=0\)
=> x.( x - 2) - 3.(x -2 ) =0
=> ( x - 3).(x -2) =0
x -3 = 0 và x -2 = 0
x = 3 x =2
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}
a)
\(x-2\left|x+1\right|=3\\ -2\left|x+1\right|=3-x\)
\(\left[{}\begin{matrix}nếu\:x\ge-1\:thì\left|x+1\right|=x+1\\nếu\:x< -1\:thì\:\left|x+1\right|=-x-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-2\left(x+1\right)=3-x\left(với\: x\ge-1\: \right)\\-2\left(-x-1\right)=3-x\left(với\: x< -1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2x-2=3-x\\2x+2=3-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=-\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)
vậy phương trình đã cho vô nghiệm.
b)
\(6-\left|3x-1\right|=5\\ -\left|3x-1\right|=-1\\ \left|3x-1\right|=1\\ \Rightarrow\left[{}\begin{matrix}3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=0\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={0;2/3}
c)
\(\left|2x-1\right|=x+2\\ \Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\\ \left(2x-1\right)^2-\left(x+2\right)^2=0\\ \left(2x-1+x+2\right)\left(2x-1-x-2\right)=0\\ \left(3x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={-1/3;3}
d)
\(\left|2x-7\right|-x-3=0\\ \left|2x-7\right|=x+3\\ \Rightarrow\left(2x-7\right)^2=\left(x+3\right)^2\\ \left(2x-7\right)^2-\left(x+3\right)^2=0\\ \left(2x-7+x+3\right)\left(2x-7-x-3\right)=0\\ \left(3x-4\right)\left(x-10\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\x-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=10\end{matrix}\right.\)
vậy phương trình đã cho có tập nghiệm là S={4/3;10}
Simplifying
x2 + 2x + -3x + -6 = 0
Reorder the terms:
-6 + 2x + -3x + x2 = 0
Combine terms: 2x + -3x = -1x
-6 + -1x + x2 = 0
Solving
-6 + -1x + x2 = 0
Solving for variable 'x'.
Factor a trinomial.
(-2 + -1x)(3 + -1x) = 0
Subproblem 1
Set the factor '(-2 + -1x)' equal to zero and attempt to solve:
Simplifying
-2 + -1x = 0
Solving
-2 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '2' to each side of the equation.
-2 + 2 + -1x = 0 + 2
Combine terms: -2 + 2 = 0
0 + -1x = 0 + 2
-1x = 0 + 2
Combine terms: 0 + 2 = 2
-1x = 2
Divide each side by '-1'.
x = -2
Simplifying
x = -2
Subproblem 2
Set the factor '(3 + -1x)' equal to zero and attempt to solve:
Simplifying
3 + -1x = 0
Solving
3 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-3' to each side of the equation.
3 + -3 + -1x = 0 + -3
Combine terms: 3 + -3 = 0
0 + -1x = 0 + -3
-1x = 0 + -3
Combine terms: 0 + -3 = -3
-1x = -3
Divide each side by '-1'.
x = 3
Simplifying
x = 3
Solution
x = {-2, 3}
Đê pt đc xác đinh <=> \(x-3\ne0\Rightarrow x\ne3\)
\(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow x+2=0\)
\(\Rightarrow x=-2\)
Cái này sao phân tích thành nhân tử được, vô nghiệm !!!
a, \(x^3+3x^2+2x-1=0\Leftrightarrow x_1=0,3....;x_2=-1,66...\)
b, \(x^3-x^2-2x+1=0\Leftrightarrow x_1=1,801...;x_2=0,44...;x_3=-1,24....\)
P/s : Bấm máy đấy:P
Đặt \(x=y-1\)khi đó phương trình trở thành
\(\left(y-1\right)^3+3\left(y-1\right)^2+2\left(y-1\right)-1=0\)
\(< =>y^3-3y^2+3y-1+3\left(y^2-2y+1\right)+2y-2-1=0\)
\(< =>y^3-3y^2+3y^2+3y-6y-1+3+2y-3=0\)
\(< =>y^3-y-1=0\)
Đặt \(y=u+v\)sao cho \(uv=\frac{1}{3}\), khi đó phương trình trở thành
\(\left(u+v\right)^3-\left(u+v\right)-1=0\)
\(< =>u^3+v^3+3uv\left(u+v\right)-\left(u+v\right)-1=0\)
\(< =>u^3+v^3+\left(u+v\right)\left(3uv-1\right)-1=0\)
\(< =>u^3+v^3=1\)(*)
Mà \(uv=\frac{1}{3}< =>u^3v^3=\frac{1^3}{3^3}=\frac{1}{9}\)(**)
Từ (*) và (**) ta được : \(\hept{\begin{cases}u^3+v^3=1=S\\u^3v^3=\frac{1}{9}=P\end{cases}}\)
Khi đó \(u^3;v^3\)là nghiệm của phương trình \(x^2-x+\frac{1}{9}=0\)(***)
Xét delta của phương trình (***) ta có :
\(\Delta=\left(-1\right)^2-4.\frac{1}{9}=1-\frac{4}{9}=\frac{5}{9}\)
Khi đó ta được : \(\orbr{\begin{cases}x=\frac{1+\sqrt{\frac{5}{9}}}{2}=\frac{1+\frac{\sqrt{5}}{3}}{2}\left(+\right)\\x=\frac{1-\sqrt{\frac{5}{9}}}{2}=\frac{1-\frac{\sqrt{5}}{3}}{2}\left(++\right)\end{cases}}\)
Với \(\left(+\right)\)ta được \(u=v=\sqrt[3]{\frac{1+\frac{\sqrt{5}}{3}}{2}}\) \(< =>y=2\sqrt[3]{\frac{1+\frac{\sqrt{5}}{3}}{2}}\)
\(< =>x=2\sqrt[3]{\frac{1+\frac{\sqrt{5}}{3}}{2}}-1\)
Với \(\left(++\right)\)ta được \(u=v=\sqrt[3]{\frac{1-\frac{\sqrt{5}}{3}}{2}}< =>y=2\sqrt[3]{\frac{1-\frac{\sqrt{5}}{3}}{2}}\)
\(< =>x=2\sqrt[3]{\frac{1-\frac{\sqrt{5}}{3}}{2}}-1\)
Vậy tập nghiệm của phương trình trên là \(\left\{2\sqrt[3]{\frac{1+\frac{\sqrt{5}}{3}}{2}}-1;2\sqrt[3]{\frac{1-\frac{\sqrt{5}}{3}}{2}}-1\right\}\)
a) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> -x + 8x = 12 - 11
<=> 7x = 1
<=> x = 1/7
Vậy S = {1/7}
b) 2x(x - 3) + 5(x - 3) = 0
<=> (2x + 5)(x - 3) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)
Vậy S = {-5/2; 3}
c)ĐK: x \(\ne\)1; x \(\ne\)2
\(\frac{3x-5}{x-2}-\frac{2x-5}{x-1}=1\)
<=> \(\frac{\left(3x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}\)
<=> 3x2 - 8x + 5 - 2x2 + 9x - 10 = x2 - 3x + 2
<=> x2 + x - 5 = x2 - 3x + 2
<=> x2 + x - x2 + 3x = 2 + 5
<=> 4x = 7
<=> x = 7/4
Vậy S = {7/4}
a, Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)
\(Đkxđ:\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)
\(Pt\Leftrightarrow x\left(x+2\right)-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tmđk\right)\end{matrix}\right.\)
Vậy .........
\(b,Đkxđ:x\ne-5\)
Ta có: \(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow2x-5=3\left(x+5\right)\)
\(\Leftrightarrow x=20\left(tmđk\right)\)
Vậy .........
c, \(Đkxđ:x\ne3\)
Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(ktmđk\right)\end{matrix}\right.\)
Vậy ............
a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(3x^2+10x-8=5x^2-2x+10\)
\(3x^2-5x^2+10x+2x-8-10=0\)
\(-2x^2+12x-18=0\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(\frac{x^2-x-6}{x-3}=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
2x3 - 3x2 + x + 6 = 0
⇔ 2x3 + 2x2 - 5x2 - 5x + 6x + 6 = 0
⇔ 2x2( x + 1 ) - 5x( x + 1 ) + 6( x + 1 ) = 0
⇔ ( x + 1 )( 2x2 - 5x + 6 ) = 0
⇔ x + 1 = 0 hoặc 2x2 - 5x + 6 = 0
+) x + 1 = 0 ⇔ x = -1
+) 2x2 - 5x + 6 = 2( x2 - 5/2x + 25/16 ) + 23/8 = 2( x - 5/4 )2 + 23/8 ≥ 23/8 > 0 ∀ x
=> x = -1
Ta có 2x3 + 2 -3x2 + x + 4 = 0
=> 2(x3 + 1) - 3x2 - 3x + 4x + 4 = 0
=> 2(x + 1)(x2 - x + 1) - 3x(x + 1) + 4(x + 1) = 0
=> (x + 1)(2x2 - 2x + 2) - (x + 1)(3x - 4) = 0
=> (x + 1)(2x2 - 2x + 2 - 3x + 4) = 0
=> (x + 1)(2x2 - 5x + 6) = 0
Xét 2 trường hợp
Nếu 2x2 - 5x + 6 = 0
mà 2x2 - 5x + 6 = \(2\left(x^2-\frac{5}{2}x+3\right)=2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}+\frac{23}{16}\right)=2\left[\left(x+\frac{5}{2}\right)^2+\frac{23}{16}\right]\)
= \(2\left(x+\frac{5}{2}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)
=> Không tìm được x thỏa mãn sao cho 2x2 - 5x + 6 = 0
TH2 : Nếu x + 1 = 0
=> x = -1
Vậy x = -1 là giá trị cần tìm