K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

7 tháng 6 2020

Ta có : \(\left(x-1\right)^4-8\left(x-1\right)^2-9=0\)

- Đặt \(\left(x-1\right)^2=a\) ta được phương trình : \(a^2-8a-9=0\)

Ta có : \(a-b+c=1-\left(-8\right)+9=0\)

Nên phương trình có 2 nghiệm \(a_1=-1,a_2=-\frac{c}{a}=9\)

=> \(\left[{}\begin{matrix}\left(x-1\right)^2=-1\left(VL\right)\\\left(x-1\right)^2=9\end{matrix}\right.\)

=> \(\left(x-1\right)^2=9\)

=> \(\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Vậy .....

19 tháng 9 2018

ĐKXĐ: \(-3\le x\le3;x\ne0\)

Đặt \(\sqrt{9-x^2}=a\left(a\ge0;a\ne3\right)\Rightarrow x^2=9-a^2\),khi đó pt đã cho trở thành:

\(\frac{9-a^2}{3+a}+\frac{1}{4\left(3-a\right)}=1\)

\(\Rightarrow3-a+\frac{1}{4\left(3-a\right)}=1\)

\(\Rightarrow\frac{4\cdot\left(3-a\right)^2+1}{4\left(3-a\right)}=1\Rightarrow4a^2-24a+37=12-4a\)

\(\Rightarrow4a^2-20a+25=0\Rightarrow\left(2a-5\right)^2=0\Rightarrow2a-5=0\)

\(\Rightarrow a=\frac{5}{2}\)(tm điều kiện),theo cách đặt ta có

\(\sqrt{9-x^2}=\frac{5}{2}\Rightarrow9-x^2=\frac{25}{4}\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\frac{\sqrt{11}}{2}\)(TMĐKXĐ)

Vậy pt đã cho có nghiệm duy nhất là \(x=\frac{\sqrt{11}}{2}\)

11 tháng 6 2018

\(\left(x-1\right)\left(x-3\right)+2\sqrt{x^2-4x+9}-9=0\\ \Leftrightarrow x^2-4x-6+2\sqrt{x^2-4x+9}=0\\ \Leftrightarrow t^2-15+2t=0\left(t=\sqrt{x^2-4x+9}\right)\\ \Leftrightarrow\left[{}\begin{matrix}t=3\\t=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

30 tháng 5 2018

trên Z hay R?

NV
17 tháng 5 2019

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a\\\sqrt{x^2-9x+9}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+b=2x\\9a^2-b^2=8x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2x-a\\9a^2-b^2=8x^2\end{matrix}\right.\)

\(\Leftrightarrow9a^2-\left(2x-a\right)^2-8x^2=0\)

\(\Leftrightarrow2a^2+ax-3x^2=0\Leftrightarrow\left(a-x\right)\left(2a+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=x\left(x\ge0\right)\\2\sqrt{x^2-x+1}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=x^2\\-5x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2-2\sqrt{6}}{5}\end{matrix}\right.\)

8 tháng 8 2019

\(\sqrt{x^2-6x+9}-\sqrt{x^2-2x+1}=\sqrt{x^2}\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-1\right)^2}=x\)

\(\Rightarrow x-3-x+1-x=0\)

\(\Rightarrow-x=2\Rightarrow x=-2\)

Vậy......

8 tháng 8 2019

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-1\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|x-3\right|-\left|x-1\right|-\left|x\right|=0\)

Xét \(x< 0\Leftrightarrow3-x+x-1+x=0\)

               \(\Leftrightarrow x=-2\)(tm)

Xét \(0\le x< 1\)\(\Leftrightarrow3-x+x-1-x=0\)

                         \(\Leftrightarrow x=1\left(l\right)\)

Xét \(1< x\le3\Leftrightarrow3-x-x+1-x=0\)

                      \(\Leftrightarrow4=3x\Leftrightarrow x=\frac{4}{3}\)(tm)

Xét \(x\ge3\Leftrightarrow x-3-x+1-x=0\)

              \(\Leftrightarrow x=-1\left(l\right)\)

7 tháng 7 2019

ĐKXĐ: x ≠ \(\pm\) 1

Từ phương trình ban đầu suy ra:

\(x^2\left(x+1\right)^2+x^2\left(x-1\right)^2=\frac{10}{9}.\left(x^2-1\right)^2\)

\(x^4+2x^3+x^2+x^4-2x^3+x^2=\frac{10}{9}\left(x^4-2x^2+1\right)\)

\(18\left(x^4+x^2\right)=10\left(x^4-2x^2+1\right)\)

\(4x^4+19x^2-5=0\Leftrightarrow\left(x^2+5\right)\left(4x^2-1\right)=0\)

\(x^2=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{2}\)( thỏa mãn ĐKXĐ)

Vậy ...