\(\frac{\sqrt{x}-1}{2}\) - \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

17 tháng 8 2019

ĐK: \(x>2;y>1\)

pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)

\(VT\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=24+4=28=VP\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=11\\y=5\end{cases}}\) ( nhận ) 

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

ĐKXĐ: \(x> 0; x\neq 1\)

\(P=\frac{1}{\sqrt{x}(\sqrt{x^3}-1)}:\frac{\sqrt{x}+1}{\sqrt{x}(1+\sqrt{x}+x)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{\sqrt{x}(1+\sqrt{x}+x)}{\sqrt{x}+1}\)

\(=\frac{1}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{1}{x-1}\)

17 tháng 7 2019

a) <=? |(x-1/4)| = 1/4-x

Th1: x >= 1/4 => x - 1/4 = 1/4 - x

<=> 2x = 2.1/4 <=> x = 1/4(nhân)

Th2: x<1/4 => -x + 1/4 = 1/4-x

<=> 0x = 0

<=> x thuộc R và x <1/4.

Vậy S ={x|x<=1/4}

17 tháng 7 2019

\(\text{a)}\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x\)

\(\Leftrightarrow\sqrt{x^2-2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2}=\frac{1}{4}-x\)

\(\Leftrightarrow\sqrt{\left(x-\frac{1}{4}\right)^2}=\frac{1}{4}-x\)

\(\Leftrightarrow x-\frac{1}{4}=\frac{1}{4}-x\)

\(\Leftrightarrow2x=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{4}\)

\(\text{b)}\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)

\(ĐKXĐ:x\ge-2\)

\(\Leftrightarrow\left(\sqrt{x-2\sqrt{x-1}}\right)^2=\left(\sqrt{x-1}-1\right)^2\)

\(\Leftrightarrow x-2\sqrt{x-1}=\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1\)

\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)

\(\Leftrightarrow x-2\sqrt{x-1}-x+2\sqrt{x-1}=-1+1\)

\(\Leftrightarrow0x=0\)

Vậy \(S=\left\{x\inℝ|x\ge-2\right\}\)

15 tháng 10 2016

1/\(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)

\(\Rightarrow2A=\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)\)

\(\Leftrightarrow2A=16\Rightarrow A=8\)

2/ ĐKXĐ : \(x\ge5\)

\(\sqrt{x-2}+\sqrt{x-5}=\sqrt{x+3}\)

\(\Rightarrow\left(\sqrt{x-2}+\sqrt{x-5}\right)^2=x+3\)

\(\Leftrightarrow2x+2\sqrt{x-2}.\sqrt{x-5}-7=x+3\)

\(\Rightarrow2\sqrt{x-2}.\sqrt{x-5}=10-x\)

\(\Leftrightarrow4\left(x-2\right)\left(x-5\right)=x^2-20x+100\)

\(\Leftrightarrow3x^2-8x-60=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)

\(x\ge5\) nên x = 6 thỏa mãn đề bài.

15 tháng 9 2019

\(A=\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{5\sqrt{5}+5-5-\sqrt{5}}{\sqrt{5^2}-1}=\frac{5\sqrt{5}-\sqrt{5}}{5-1}=\frac{4\sqrt{5}}{4}=\sqrt{5}\)