Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Điều kiện xác định \(x\ge0\)
\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)
\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)
Vậy pt vô nghiệm
2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)
\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)
\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)
Vậy pt vô nghiệm.
1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
Đặt \(a=\sqrt{x}-1\) ta đc:
\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)
\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)
=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))
giải pt
\(|4x-1|\)\(\sqrt{x^2+1}\)=2\(x^2\) -2x+2
\(\sqrt{\frac{1}{x+3}}\)+\(\sqrt{\frac{5}{x+4}}\) =4
a,\(\Leftrightarrow\left(4x-1\right)^2\left(x^2+1\right)=4\left(x^2-x+1\right)^2\)
\(\Leftrightarrow\left(16x^2-8x+1\right)\left(x^2+1\right)=4\left(x^4+x^2+1-2x^3+2x^2-2x\right)\)
\(\Leftrightarrow16x^4+17x^2-8x^3-8x+1=4x^4+12x^2+4-8x^3-8x\)
\(\Leftrightarrow12x^4+5x^2-3=0\left(1\right)\)
Dat \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow12t^2+5t-3=0\)
\(\Delta=25-4.12.\left(-3\right)=169>0\)
Suy ra PT co hai nghiem phan biet
\(t_1=\frac{1}{3};t_2=-\frac{3}{4}\)
\(x=\frac{1}{\sqrt{3}}\)
\(\sqrt{\frac{-6}{1+x}}=5\)
\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)
\(\Leftrightarrow\frac{-6}{1+x}=25\)
\(\Leftrightarrow x+1=\frac{-6}{25}\)
\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
\(\Leftrightarrow-x^2+\frac{2\sqrt{x}}{3}+1=-x+\sqrt{x+1}\)
\(\Leftrightarrow-x^2+\frac{2\sqrt{x}}{3}+1\)
\(\Leftrightarrow-x+\sqrt{x+1}\)
\(\Leftrightarrow\frac{1}{3}\left(-3x^2+2\sqrt{x+3}\right)=x+\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x}\left(x-1\right)+1=0\)
\(\Rightarrow\)Phương trình có nghiệm bằng 0
lại thg xàm loiz này
\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
\(pt\Leftrightarrow\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}-x+\sqrt{1-x}+x-1\)
\(\Leftrightarrow\frac{2}{3}\sqrt{-x\left(x-1\right)}=\frac{x-x^2}{\sqrt{x}+x}+\frac{1-x-\left(x-1\right)^2}{\sqrt{1-x}+x-1}\)
\(\Leftrightarrow\frac{2}{3}\sqrt{-x\left(x-1\right)}-\frac{-x\left(x-1\right)}{\sqrt{x}+x}-\frac{-x\left(x-1\right)}{\sqrt{1-x}+x-1}=0\)
\(\Leftrightarrow-x\left(x-1\right)\left(\frac{\frac{4}{9}}{\frac{2}{3}\sqrt{-x\left(x-1\right)}}-\frac{1}{\sqrt{x}+x}-\frac{1}{\sqrt{1-x}+x-1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x=0\\x-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)