K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

Nếu  \(x\ge\frac{1}{3}\) thì    \(\left|3x-1\right|=3x-1\)

Khi đó pt trở thành    \(1-3x+1=2\)

                            \(\Leftrightarrow\)\(-3x=0\)

                            \(\Leftrightarrow\)  \(x=0\)  (loại)

Nếu   \(x< \frac{1}{3}\)thì   \(\left|3x-1\right|=1-3x\)

Khi đó phương trình trở thành:   \(1-1+3x=2\)

                                             \(\Leftrightarrow\)\(3x=2\)

                                             \(\Leftrightarrow\)   \(x=\frac{2}{3}\) (loại)

Vậy....

29 tháng 4 2018

\(|3x-1|>=0\)với mọi x\(\Rightarrow1-|3x-1|< =1-0=1\Rightarrow1-|3x-1|< =1\)

\(\Rightarrow1-|3x-1|=2\)vô lí \(\Rightarrow x\in\varnothing\)

vậy .....

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

what sao kì vậy, đề có sai ko? x=5,864536512

29 tháng 1 2017

ko đâu bạn 

28 tháng 4 2018

1-|3x-1|=2

\(\Leftrightarrow\left|3x-1\right|=1-2\)

\(\Leftrightarrow\left|3x-1\right|=-1\) (vô lý)

=> không tìm được x thỏa đề bài

Vậy \(S=\varnothing\)

28 tháng 4 2018

Ta có : \(1-|3x-1|=2\Leftrightarrow|3x-1|=-1\)( vô nghiệm )

Vậy phương trình vô nghiệm

29 tháng 1 2017

Ta có

Pt <=> x3+6x2+12x+8+9x2-1=x3+3x2+3x+1

    <=> 12x2+9x+6=0

    <=> 3(4x2+3x+2)=0

<=>    \(3\left(4x^2+2.\frac{3}{4}.2x+2\right)=0\)

\(\Leftrightarrow3\left[\left(2x+\frac{3}{4}\right)^2+\frac{23}{16}\right]=0\)

\(\Leftrightarrow3\left(2x+\frac{3}{4}\right)^2+\frac{69}{16}=0\)vô lý vì \(3\left(2x+\frac{3}{4}\right)^2\ge0\Rightarrow3\left(2x+\frac{3}{4}\right)^2+\frac{69}{16}\ge\frac{69}{16}>0\)

Vậy pt vô ghiệm

9 tháng 2 2020

\(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)

\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-2x-3\right)\)

\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)

\(\Leftrightarrow-15x+18x+7+27=0\)

\(\Leftrightarrow3x+34=0\)

\(\Leftrightarrow x=\frac{-34}{3}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{34}{3}\right\}\)

11 tháng 8 2020

(x+1)3 - (x-2)3 = (3x-1).(3x+1)

⇔ x3 + 3x2 + 3x + 1 - x3 + 6x2 - 12x + 8 = 9x2 - 1

⇔ 9x2 - 9x + 9 = 9x2 - 1

⇔ -9x = -10

⇔ x = \(\frac{10}{9}\)

S={\(\frac{10}{9}\)}

NV
4 tháng 4 2019

\(\left(3x-2\right)\left(3x+8\right)\left(x+1\right)^2+16=0\)

\(\Leftrightarrow\left(9x^2+18x-16\right)\left(x^2+2x+1\right)+16=0\)

\(\Leftrightarrow\left[9\left(x^2+2x+1\right)-25\right]\left(x^2+2x+1\right)+16=0\)

Đặt \(x^2+2x+1=a\ge0\)

\(\left(9a-25\right)a+16=0\)

\(\Leftrightarrow9a^2-25a+16=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=\frac{16}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+2x+1=1\\x^2+2x+1=\frac{16}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=\left(\frac{4}{3}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=\frac{1}{3}\\x=-\frac{7}{3}\end{matrix}\right.\)

12 tháng 5 2018

\(\left(3x-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}+1\right)=0\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right).\frac{1}{3}=0\)

\(\Rightarrow3x-\frac{1}{2}=0:\frac{1}{3}\)

\(\Rightarrow3x-\frac{1}{2}=0\)

\(\Rightarrow3x=0+\frac{1}{2}\)

\(\Rightarrow3x=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}:3\)

\(\Rightarrow x=\frac{1}{6}\)