K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

\(\Leftrightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)

\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)

\(\Leftrightarrow x\left(\frac{x-6+x-3}{\left(x-3\right)\left(x-6\right)}-\frac{x-4+x-5}{\left(x-4\right)\left(x-5\right)}\right)=0\)

\(\Leftrightarrow x\left(2x-9\right)\left(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{9}{2}\end{matrix}\right.\)

27 tháng 2 2020

B/\(\Leftrightarrow\frac{2\left(3x^2-11x+9\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{6}{x-6}=0\)

\(\Leftrightarrow-\frac{2\left(11x^2-42x+36\right)}{\left(x-6\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)\(\Rightarrow11x^2-42x+36=0\)\(\Leftrightarrow11x^2-42x+\frac{441}{11}-\frac{45}{11}=\left(\sqrt{11}x+\frac{21}{\sqrt{11}}\right)^2-\frac{45}{11}.\)Dùng căn giải típ nha

15 tháng 2 2017

Sửa đề: thêm (...) phần mẫu :

\(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\\ \)

ĐK: \(x^2-3x+3\ne0\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\left(3-\frac{9}{4}\right)\ne0\) có (3-9/4)>0 vậy các mẫu khác không với mọi x

Đặt x^2-3x+4=t => t>=(4-9/4)=7/4

\(\Leftrightarrow\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\Leftrightarrow\frac{t\left(t+1\right)}{t\left(t-1\right)\left(t+1\right)}+\frac{2\left(t^2-1\right)}{t\left(t-1\right)\left(t+1\right)}=\frac{6t\left(t-1\right)}{t\left(t-1\right)\left(t+1\right)}\)

\(\Leftrightarrow\left(t^2+t\right)+\left(2t^2-2\right)=6t^2-6t\)\(\Leftrightarrow3t^2-7t=-2\)

\(\Leftrightarrow t^2-2.\frac{7}{6}t+\left(\frac{7}{6}\right)^2=\frac{49}{36}-\frac{2}{3}=\frac{3.49-2.36}{3.36}=\frac{49-2.12}{36}=\frac{25}{36}=\left(\frac{5}{6}\right)^2\)

\(\Leftrightarrow\left(t-\frac{7}{6}\right)^2=\left(\frac{5}{6}\right)^2\Rightarrow\left\{\begin{matrix}t=\frac{7+5}{6}=2\\t=\frac{7-5}{6}=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\) 7/4<2 loại luôn

Kết luận vô nghiệm

15 tháng 2 2017

Nhầm 7/4<2 có nghiệm

tiếp:

x^2-3x+4=2<=>x^2-3x+2=0 {a+b+c=0}

x=1 hoạc x=2

Kết luận: pt có nghiệm x=1 hoạc x=2

19 tháng 6 2019

\(a,\)( sửa lại xíu đề cho đúng nhé )

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)

\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)

\(\Rightarrow x=1\)

19 tháng 6 2019

\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)

Đặt \(x^2+10x+16=a\)

\(\Rightarrow a\left(a+8\right)=-16\)

\(\Rightarrow a^2+8a+16=0\)

\(\Rightarrow\left(a+4\right)^2=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Rightarrow x^2+10x+25-25=0\)

\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)

\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

10 tháng 1 2018

2. \(x\left(x+2\right)\left(x+3\right)\left(x+5\right)=280\)

\(\Leftrightarrow x\left(x+5\right)\left(x+2\right)\left(x+3\right)=280\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+6\right)=280\)

Đặt \(x^2+5x+3=t\)

\(\Rightarrow\left(t-3\right)\left(t+3\right)=280\)

\(\Leftrightarrow t^2-9=280\)

\(\Leftrightarrow t^2=289\Leftrightarrow\left[{}\begin{matrix}t=17\\t=-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+3=17\\x^2+5x+3=-17\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-14=0\\x^2+5x+20=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+5x-14=0\text{(vì }x^2+5x+20=\left(x+\dfrac{5}{2}\right)^2+\dfrac{55}{4}>0\forall x\text{)}\)

\(\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\)

\(\Leftrightarrow\) x - 2 = 0 hoặc x + 7 = 0

\(\Leftrightarrow\) x = 2 hoặc x = - 7

Vậy x = 2 hoặc x = -7.

10 tháng 1 2018

3. \(\left(x+3\right)\left(x+4\right)\left(x+5\right)=x\)

\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\left(x+5\right)-x=0\)

\(\Leftrightarrow x^3+12x^2+47x+60-x=0\)

\(\Leftrightarrow x^3+12x^2+46x+60=0\)

\(\Leftrightarrow x^3+6x^2+6x^2+36x+10x+60=0\)

\(\Leftrightarrow x^2\left(x+6\right)+6x\left(x+6\right)+10\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow x+6=0\text{(vì }x^2+6x+10=\left(x+3\right)^2+1>0\forall x\text{)}\)

\(\Leftrightarrow x=-6\)

Vậy x = -6.

9 tháng 3 2020

\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}-\frac{1}{x+1}-\frac{1}{x+3}-\frac{1}{x+4}-\frac{1}{x+6}=0\)

\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{\left(x+4\right)\left(x+5\right)}-\frac{1}{\left(x+6\right)\left(x+7\right)}=0\)

\(\Leftrightarrow\frac{8x+20}{x\left(x+1\right)\left(x+4\right)\left(x+5\right)}+\frac{8x+36}{\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x+7\right)}=0\).Đến đây mk chịu

12 tháng 9 2018

1, x+3(x-1)=4 => 4x-3=4 => 4x=7 => x=\(\dfrac{7}{4}\)

2, 2.(x-3)+5=3 => 2x-6+5=3 =>2x=4 => x=2

3, x.(x-2)-\(x^2\)=-2 => \(x^2-2x-x^2\)=-2 => -2x=-2 => x=1

4, \(x^2-x.\left(x+2\right)=6\)=> \(x^2-x^2-2x=6\)=> -2x=6 => x=-3

5,3x.(x-5)-3x.(x-3)=6 => \(3x^2-15x-3x^2+9x=6\) => -6x=6 => x=-1

6, 3.(\(x^2-2x+1\))+x.(2-3x)=7 => \(3x^2-6x+3+2x-3x^2=7\)=> -4x=4=> x=-1

19 tháng 6 2019

Giải pt :

a) \(2x\left(x+5\right)-\left(x-3\right)^2=x^2+6\)

\(\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0\)

\(\Leftrightarrow16x-15=0\)

\(\Leftrightarrow x=\frac{15}{16}\)

b) \(6\left(x-3\right)+\left(x-1\right)^2-\left(x+1\right)^2=2x\)

\(\Leftrightarrow2x-18=2x\)

\(\Leftrightarrow-18=0\)( vô lí )

=> x thuộc rỗng

c)d) tương tự

e) \(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)

\(\Leftrightarrow\frac{5x-2}{6}+\frac{9-12x}{6}=\frac{12}{6}-\frac{2x+14}{6}\)

\(\Leftrightarrow5x-2+9-12x=12-2x-14\)

\(\Leftrightarrow-5x+9=0\)

\(\Leftrightarrow x=\frac{9}{5}\)

f) \(\frac{2x-1}{2}=\frac{2x+1}{4}-\frac{1-2x}{8}\)

\(\Leftrightarrow\frac{4\left(2x-1\right)}{8}=\frac{2\left(2x+1\right)}{8}-\frac{1-2x}{8}\)

\(\Leftrightarrow8x-4=4x+2-1+2x\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\frac{5}{2}\)

19 tháng 6 2019

Tìm x :

a) \(3x^3-27x=0\)

\(\Leftrightarrow3x\left(x^2-9\right)=0\)

\(\Leftrightarrow3x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b) \(2x^3-12x^2+18x=0\)

\(\Leftrightarrow2x\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 8 2019

huyển vế: 
(x-2)(x-6)(x-3)(x-4)- 72X^2 

(x-2)(x-6) 
= (x^2 - ... +12) 
số giữa: 
-6x -2x = -8x 

(x-3)(x-4) 
= (x^2 ... +12) 
số giữa: 
-4x -3x = -7x 

nhân 2 số giữa với nhau: 
(-8x)(-7x) = +56x^2 
-72x^2 +56x^2 = -16x^2 = (-16x)(x) 

Đáp số: 
(x^2 -16x +12)(x^2 +x +12)

7 tháng 5 2020

a)

\(\left(5x+3\right)\cdot\left(x^2+4\right)\cdot\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x+3=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{5}\\x=4\end{matrix}\right.\)

b)

\(\left(4x-1\right)\cdot\left(x-3\right)-\left(x-2\right)\cdot\left(5x+2\right)=0\\ \Leftrightarrow4x^2-12x-x+3-5x^2-2x+10x+4=0\\ \Leftrightarrow-x^2-5x+7=0\\ \Rightarrow x=\left[{}\begin{matrix}-\frac{5+\sqrt{53}}{2}\\-\frac{5-\sqrt{53}}{2}\end{matrix}\right.\)

c)

\(\left(x+3\right)\cdot\left(x-5\right)+\left(x+3\right)\cdot\left(3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(x-5+3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(4x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)

d)

\(\left(x+6\right)\cdot\left(3x-1\right)+x^2-36=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x^2-36\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x+6\right)\cdot\left(x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1+x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(4x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)

e)

\(0.75x\cdot\left(x+5\right)=\left(x+5\right)\cdot\left(3-1.25x\right)\\ \Leftrightarrow0.75x\cdot\left(x+5\right)-\left(x+5\right)\cdot\left(3-1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(0.75x-3+1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)