\(x\sqrt{y-1}+2y\sqrt{x-1}=\dfrac{3xy}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

ĐK:\(x\ge 1;y\ge 1\)

Áp dụng BĐT AM-GM ta có:

\(VT=x\sqrt{y-1}+2y\sqrt{x-1}\)

\(\le x\cdot\dfrac{y-1+1}{2}+2y\dfrac{x-1+1}{2}\)

\(=\dfrac{xy}{2}+\dfrac{2xy}{2}=\dfrac{3xy}{2}=VP\)

Xảy ra khi \(x=y=2\)

23 tháng 9 2017

,chắc khômg

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

16 tháng 6 2018

a) VT bạn bình phương rồi B.C.S sẽ được VT<=2

VP=3x^2-12x+12+2=3(x-2)^2+1>=2

Dấu = xảy ra khi x=2

16 tháng 6 2018

\(\text{Đk: }1,5\le x\le2,5\)

Áp dụng bđt cauchy ta có: 

\(\text{VT }\Leftrightarrow\frac{2x-3+1+1-2x+1}{2}=2\)

Mà: \(\text{VP}=3\left(x-2\right)^2+2\ge2\)

\(\text{ĐT}\Leftrightarrow x=2\)

\(\Rightarrow x=2\)

19 tháng 6 2018

Bài ni cô hiền hay thầy tuấn ra vậy e

19 tháng 6 2018

Like!!! Căn bậc hai. Căn bậc ba

30 tháng 11 2020

hello bạn

7 tháng 1 2017

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)

Đơn giản rồi làm tiếp nhé

7 tháng 1 2017

\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)

Với x = 0 thì y = 0

Với x \(\ne\)0 thì nhân pt trên cho x ta được

\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)

Lấy (1) + (2) vế theo vế được

\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)

\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)

\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)

Tới đây thì đơn giản roofin làm tiếp nhé

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

a) ĐK: \(x^2\leq 5\)

Ta có: \(\sqrt{5-x^2}=x-1\)

\(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ (\sqrt{5-x^2})^2=(x-1)^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 1\\ 5-x^2=x^2-2x+1\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 1\\ 2x^2-2x-4=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-2=0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x-2)(x+1)=0\end{matrix}\right.\)

\(\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

b)

ĐK: \(x\geq \frac{5}{2}\)

Nhân cả 2 vế của pt với $\sqrt{2}$ thu được:

\(\sqrt{2x+2\sqrt{2x-5}-4}+\sqrt{2x-6\sqrt{2x-5}+4}=4\)

\(\Leftrightarrow \sqrt{(2x-5)+2\sqrt{2x-5}+1}+\sqrt{(2x-5)-6\sqrt{2x-5}+9}=4\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-5}+1)^2}+\sqrt{(\sqrt{2x-5}-3)^2}=4\)

\(\Leftrightarrow \sqrt{2x-5}+1+|\sqrt{2x-5}-3|=4\)

\(\Rightarrow |\sqrt{2x-5}-3|=3-\sqrt{2x-5}(*)\)

Nếu \(x\geq 7\Rightarrow |\sqrt{2x-5}-3|=\sqrt{2x-5}-3\)

$(*)$ trở thành: \(\sqrt{2x-5}-3=3-\sqrt{2x-5}\)

\(\Rightarrow \sqrt{2x-5}=3\Rightarrow x=7\) (thỏa mãn)

Nếu \(\frac{5}{2}\leq x< 7\Rightarrow |\sqrt{2x-5}-3|=3-\sqrt{2x-5}\)

$(*)$ trở thành:

\(3-\sqrt{2x-5}=3-\sqrt{2x-5}\) (luôn đúng)

Vậy pt có nghiệm $x=7$ hoặc $\frac{5}{2}\leq x< 7$

Hay PT có nghiệm thuộc \([\frac{5}{2}; 7]\)