\(x+\frac{2a\left|x+a\right|}{x}=\frac{a^2}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Phương trình đã cho tương đương với \(x^2+2a\left|x+a\right|-a^2=0\) với \(x\ne0\)

\(\left|x+a\right|=\begin{cases}x+a\left(x\ge-a\right)\\-\left(x+a\right)\left(x< -a\right)\end{cases}\)

TH1 : Với \(x< -a:x^2-2a\left(x+a\right)-a^2=0\) với \(x\ne0\)

\(\Leftrightarrow x^2-2ax-3a^2=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-3a\right)=0\) với \(x\ne0\)

\(x=3a< -a\Leftrightarrow x=3a\) với \(a< 0\).

TH2 : Với \(x\ge-a:x^2+2a\left(x+a\right)-a^2=0\) với \(x\ne0\) \(\Leftrightarrow x^2+2ax+a^2=0\)

\(\Leftrightarrow\left(x+a\right)^2=0\Leftrightarrow x=-a.\)Tóm lại : \(a=0:\)Vô nghiệm

\(a>0:\)một nghiệm \(x=-a\) ; \(a< 0\) : hai nghiệm \(x_1=-4;x_2=3a.\)

7 tháng 8 2016

$Dkxd:x>2\text{ hoặc } x\le -2$.

Th1: $x>2$. Khi đó:

$pt\iff (x-2)(x+2)+4\sqrt{x-2}\sqrt{\frac{(x+2)(x-2)}{x-2}}=-3$

$\iff (x-2)(x-2)+4\sqrt{(x-2)(x+2)}+3=0\iff (\sqrt{(x-2)(x+2)}+1)(\sqrt{(x-2)(x+2)}+3)=0(1)$.

Do $\sqrt{(x-2)(x+2)}\ge 0$ nên $VT(1)>0=VP(2)\implies $ vô nghiệm.

Th2: $x\le -2\implies 2-x\ge 0;-x-2>0$.

Khi đó: $pt\iff (2-x)(-x-2)-4(2-x)\sqrt{\frac{-x-2}{2-x}}+3=0$

$\iff (2-x)(-x-2)-4\sqrt{(2-x)(-x-2)}+3=0\iff (\sqrt{(2-x)(-x-2)-1})(\sqrt{(2-x)(-x-2)}-3)=0$.

$\iff \sqrt{(x-2)(x+2)}=1\text{ hoặc } \sqrt{(x-2)(x+2)}=3$.

$\iff x=5(l)\text{ hoặc} x=13(l)$.

Vậy phương trình đã cho vô nghiệm

8 tháng 2 2017

PT : \(x+\frac{2a\left(x+a\right)}{x}=\frac{a^2}{x}.\)

Phương trình đã cho tương đương với \(x^2+2a\left|x+a\right|-a^2=0\) với \(x\ne0\)

\(\left|x+a\right|=\left\{\begin{matrix}x+a\left(x\ge-a\right)\\-\left(x+a\right)\left(x< -a\right)\end{matrix}\right.\)

TH1 : Với \(x< -a\) : \(x^2-2a\left(x+a\right)-a^2=0\) với \(x\ne0\).

\(\Leftrightarrow x^2-2ax-3a^2=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-3a\right)=0\) với \(x\ne0.\)

\(x=3a< -a\Leftrightarrow x=3a\) với \(a< 0.\)

TH 2 : Với \(x\ge-a\) : \(x^2+2a\left(x+a\right)-a^2=0\) với \(x\ne0\)

\(\Leftrightarrow x^2+2ax+a^2=0\)

\(\Leftrightarrow\left(x+a\right)^2=0\Leftrightarrow x=-a\)

Vậy ..............

20 tháng 1 2017

2a^4=(1-a)^2=a^2-2a+1

\(A=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{\sqrt{2}!\left(a-2\right)!+2a^2}\)a> 2 không thể là nghiệm=> a<2

\(A=\frac{2a-3}{\sqrt{2}\left(2-a\right)+2a^2}=\frac{2a-3}{2a^2-\sqrt{2}a+2\sqrt{2}}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a-1+3\right)}\)

\(A=\frac{2a-3}{\sqrt{2}\left(3\right)}\)

20 tháng 1 2017

bạn giải thích rõ hơn được không ?

1 tháng 5 2019

1) Ta có ĐK: 0 < a,b,c < 1

\(\sqrt{\frac{a}{1-a}}=\frac{a}{\sqrt{a\left(1-a\right)}}\ge2a\) (BĐT AM-GM cho 2 số a và 1-a)

Tương tự, ta có \(\sqrt{\frac{b}{1-b}}=\frac{b}{\sqrt{b\left(1-b\right)}}\ge2b\)\(\sqrt{\frac{c}{1-c}}=\frac{c}{\sqrt{c\left(1-c\right)}}\ge2c\)

\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge2\left(a+b+c\right)=2\)(do a+b+c=1)

Dấu đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = \(\frac{1}{2}\) (không thoả mãn điều kiện a+b+c=1)

Dấu đẳng thức trên không xảy ra được. Vậy ta có bất đẳng thức\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

30 tháng 9 2019

\(x^2-x-1=0\)

<=> \(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\)

<=> \(\left[{}\begin{matrix}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\frac{\sqrt{5}+1}{2}>0\\x=\frac{1-\sqrt{5}}{2}< 0\end{matrix}\right.\)

Do a là nghiệm nguyên âm của pt \(x^2-x-1=0\)

=> a= \(\frac{1-\sqrt{5}}{2}\)

<=> \(2-a=2-\frac{1-\sqrt{5}}{2}=\frac{4-1+\sqrt{5}}{2}=\frac{3+\sqrt{5}}{2}=\frac{6+2\sqrt{5}}{4}=\frac{5+2\sqrt{5}+1}{4}\)

<=> 2-a= \(\frac{\left(\sqrt{5}+1\right)^2}{4}>0\) => \(\sqrt{2-a}=\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{4}}=\left|\frac{\sqrt{5}+1}{2}\right|=\frac{\sqrt{5}+1}{2}\) (1)

\(5+8a=5+8.\frac{1-\sqrt{5}}{2}=5+4\left(1-\sqrt{5}\right)=5+4-4\sqrt{5}=5-2.2\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\)

<=> \(\sqrt[3]{5+8a}=\sqrt[3]{\left(\sqrt{5}-2\right)^2}\)(2)

Từ (1) ,(2)=> \(A=\frac{\sqrt{5}+1}{2}+\sqrt[3]{\left(\sqrt{5}-2\right)^2}\)( đến đây k biết đề có sai k ,nếu k sai thì giải nốt nha,chỉ bít làm đến đây thôi :))

30 tháng 9 2019

@tth