
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

a) \(\frac{x}{x+1}-\frac{2x-3}{x-1}=\frac{2x+3}{x^2-1}\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow x\left(x-1\right)-\left(2x-3\right)\left(x+1\right)=2x+3\)
\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=2x+3\)
\(\Leftrightarrow-x^2-2x=0\Leftrightarrow-x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b) \(\frac{x-1}{x}-\frac{x-2}{x+1}=2\) \(\left(ĐKXĐ:x\ne0;x\ne-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-x\left(x-2\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2-1-x^2+2x=2x^2+2x\)
\(\Leftrightarrow2x^2=-1\left(\text{vô lí}\right)\)
Vậy phương trình vô nghiệm.

Bài làm :
\(a,2x+1=x-4\)
\(\Rightarrow2x-x=-4-1\)
\(\Rightarrow x=-5\)
a) 2x + 1 = x - 4
<=> 2x - x = -4 - 1
<=> x = -5
Vậy S = { -5 }
b) \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)( ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\))
<=> \(\frac{x+2}{x-2}=\frac{2}{x\left(x-2\right)}+\frac{1}{x}\)
<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
<=> \(\frac{x^2+2x}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
Khử mẫu
<=> \(x^2+2x=2+x-2\)
<=> \(x^2+2x-x=0\)
<=> \(x^2+x=0\)
<=> \(x\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Đối chiếu với ĐKXĐ ta thấy x = -1 thỏa mãn
Vậy S = { -1 }
c) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
<=> \(\frac{x+1}{2}-\frac{2x}{2}\le\frac{1}{2}\)
Khử mẫu
<=> \(x+1-2x\le1\)
<=> \(-x+1\le1\)
<=> \(-x\le0\)
<=> \(x\ge0\)
Vậy nghiệm của bất phương trình là \(x\ge0\)

@Nguyễn Lê Phước Thịnh bạn có thể chỉ chỗ mình sai sót được không ạ? Mình mò không ra ._.

\(\frac{x-1}{2}\left(x-2\right)=\frac{\left(x-1\right)}{2}\left(x+2\right)\)
<=> \(\frac{\left(x-1\right)\left(x-2\right)}{2}=\frac{\left(x-1\right)\left(x+3\right)}{2}\)
<=> (x - 1)(x - 2) = (x - 1)(x + 3)
<=> x2 - 2x - x + 2 = x2 + 3x - x - 3
<=> -3x + 2 = 2x - 3
<=> 2 = 2x - 3 + 3x
<=> 2 = 3 + 5x
<=> 2 + 3 = 5x
<=> 5 = 5x
<=> x = 1

Bài 1:
a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2
\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0
\(\Leftrightarrow\) -x2 + 3x = 0
\(\Leftrightarrow\) x(3 - x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy S = {0; 3}
b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)
\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8
\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0
\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0
\(\Leftrightarrow\) -6x - 4 = 0
\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-2}{3}\)}
c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)
\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)
\(\Rightarrow\) x - 3 + 2x = 1 - 5x
\(\Leftrightarrow\) 3x - 3 = 1 - 5x
\(\Leftrightarrow\) 3x + 5x = 1 + 3
\(\Leftrightarrow\) 8x = 4
\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)
Vậy S = {\(\frac{1}{2}\)}
Bài 2:
a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x
\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x
\(\Leftrightarrow\) x - 2 = -4x + 2
\(\Leftrightarrow\) x + 4x = 2 + 2
\(\Leftrightarrow\) 5x = 4
\(\Leftrightarrow\) x = \(\frac{4}{5}\)
Vậy S = {\(\frac{4}{5}\)}
Chúc bn học tốt!! (Phần b hình như không có gì thì phải)

\(\Leftrightarrow\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{\left(x-1\right)^2}{\left(x+2\right)\left(x-1\right)}\)\(\Rightarrow x\left(x+2\right)=\left(x-1\right)^2\)
\(\Leftrightarrow x^2+2x=x^2-2x+1\)
\(\Leftrightarrow4x-1=0\)\(\Leftrightarrow x=\frac{1}{4}\)
\(\frac{x}{x-1}=\frac{x-1}{x+2}\)
<=> x(x + 2) = (x - 1)2
<=> x^2 + 2x = x^2 - 2x + 1
<=> x^2 + 2x - x^2 + 2x - 1 = 0
<=> 4x - 1 = 0
<=> 4x = 1
<=> x = 1/4
chuyển vế ta có
x^2+1/x^2-x-1/x=0
x^2-x-1/x+1/x^2=0
x(x-1)-1/x(1-1/x)=0
x(x-1)-1/x((x-1)/x)=0
x(x-1)-(x-1)/x^2=0
(x-1)(x-1/x^2)=0
(x-1)((x^3-1)/x^2)=0
suy ra x-1=0 hoặc (x^3-1)/x^2=0
x=1 hoặc x^3-1=0
vậy x=1