Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Pt\Leftrightarrow x^4+x^2+\dfrac{1}{4}=x^2+2013-\sqrt{x^2+2013}+\dfrac{1}{4}\\ \Leftrightarrow\left(x^2+\dfrac{1}{2}\right)^2=\left(\sqrt{x^2+2013}-\dfrac{1}{2}\right)^2\\ \Rightarrow x^2+1=\sqrt{x^2+2013}\Leftrightarrow x^4+x^2-2012=0\\ \Leftrightarrow x_{1,2}=\pm\sqrt{\dfrac{-1+\sqrt{8049}}{2}}\)
b: =>x^4-(x+1)^2=0
=>(x^2-x-1)(x^2+x+1)=0
=>x^2-x-1=0
=>\(x=\dfrac{1\pm\sqrt{5}}{2}\)
\(x^2-3x-\sqrt{x^2-3x+4}+2=0\) ĐK : \(x^2-3x+4\ge0\)
\(\Leftrightarrow x^2-3x+2=\sqrt{x^2-3x+4}\)
\(\Leftrightarrow x^2-3x+4-2=\sqrt{x^2-3x+4}\)
Đặt : \(\sqrt{x^2-3x+4}=t\) \(\left(t\ge0\right)\)
\(pt\Leftrightarrow t^2-2=t\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-1\left(l\right)\end{matrix}\right.\)
Với \(t=2\Rightarrow\sqrt{x^2-3x+4}=2\)
\(\Leftrightarrow x^2-3x+4=4\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Ta có: \(x^2-3x-\sqrt{x^2-3x+4}+2=0\)
\(x^2-3x+4-\sqrt{x^2-3x+4}-2=0\)
Đặt \(t=\sqrt{x^2-3x+4}\left(t\ge0\right)\)
Ta có: \(t^2-t-2=0\)
\(1+\left(-2\right)-\left(-1\right)=0\)
\(\Rightarrow\)pt có 2 nghiệm.
\(\left[{}\begin{matrix}t_1=-1\left(loại\right)\\t_2=2\left(nhận\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-3x+4}=2\)
\(\Leftrightarrow x^2-3x+4=4\)
\(\Leftrightarrow x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy nghiệm của pt là \(\left\{0;3\right\}\)
a/ ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)
\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)
Phương trình trở thành:
\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)
\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)
\(\Leftrightarrow x^2-16=x^2-16x+64\)
\(\Rightarrow x=5\)
b/ \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:
\(a+3b=3+ab\)
\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)
\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)
b/Cộng vế với vế:
\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)
\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)
\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)
- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)
\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)
Lời giải:
ĐK: \(-2\leq x\leq 4\)
Ta có: \(x^2-2x+8-4\sqrt{(4-x)(x+2)}=0\)
\(\Leftrightarrow x^2-2x+8-4\sqrt{2x+8-x^2}=0\)
\(\Leftrightarrow 16-(2x-x^2+8)-4\sqrt{2x+8-x^2}=0\)
Đặt \(\sqrt{2x+8-x^2}=t\)
\(\Rightarrow 16-t^2-4t=0\)
\(\Rightarrow t=-2\pm 2\sqrt{5}\). Vì \(t\geq 0\Rightarrow t=-2+2\sqrt{5}\)
\(\Rightarrow t^2=2x+8-x^2=24-8\sqrt{5}\)
\(\Leftrightarrow x^2-2x+16-8\sqrt{5}=0\)
\(\Rightarrow x=1\pm \sqrt{8\sqrt{5}-15}\) (đều thỏa mãn)
Vậy............
Ta có : \(x^4+2012x^2-2013=0\)
=> \(x^4-x^2+2013x^2-2013=0\)
=> \(x^2\left(x^2-1\right)+2013\left(x^2-1\right)=0\)
=> \(\left(x^2+2013\right)\left(x^2-1\right)=0\)
=> \(\left(x^2+2013\right)\left(x-1\right)\left(x+1\right)=0\)
Mà \(x^2+2013>0\)
=> \(x^2-1=0\)
=> \(x=\pm1\)
Vậy phương trình có nghiệm là \(S=\left\{1,-1\right\}\)
Lời giải:
$x^4+2012x^2-2013=0$
$\Leftrightarrow x^4-x^2+2013x^2-2013=0$
$\Leftrightarrow x^2(x^2-1)+2013(x^2-1)=0$
$\Leftrightarrow (x^2-1)(x^2+2013)=0$
Dễ thấy $x^2+2013\geq 2013>0$ với mọi $x\in\mathbb{R}$ nên $x^2-1=0$
$\Rightarrow x=\pm 1$