Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) X^3-x^2-21x+45=0
x^3-3x^2+2x^2-6x-15x+45=0
x^2(x-3)+2x(x-3)-15(x-3)=0
(x-3)(x^2+2x-15)=0
(x-3)(x^2-3x+5x-15)=0
(x-3)[x(x-3)+5(x-3)]=0
(x-3)^2(x+5)=0
<=> x=3 hoặc x=-5
Câu 2 đề ko rõ lắm bn sửa lại đề để mk giải hộ nha
Bích Ngọc bạn xem lời giải dưới đây nhé :
X^3-x^2-21x+45=0\(\Leftrightarrow\)(x+5)(x^2-6x+9)=0
\(\Leftrightarrow\)(x+5)(x-3)^2=0
Rồi đó tới đây bạn tự tìm x nhé!
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=40\\ \Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=40\\ \Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=40\\ \Leftrightarrow\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]=40\\ \Leftrightarrow\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)-40=0\)
Mình thấy nghiệm xấu lắm, bạn xem có đúng đề ko
ý a pạn đưa về dạng ax+b=0 khi chuyển 16 sang và rút gọn 2 biểu thức còn lại đưa về dạng (a+b)2+(a-b)2-16=0. thế thôi. hai biểu thức (x+3)4+(x-2) 4 tự phân tích nhé
Bài này quá dễ
x/40 - x/50= 1/3
<=>5x/200 - 4x/200=1/3
<=> x/200= 1/3
<=> x= 200/3.
bạn ê, mik bị ngu toán, lười suy nghĩ ấy mà nên đừng nói dễ hay khó j vs mik
<=>x-45/55 -1 + x-47/53 -1=x-55/45 -1 + x-53/47-1
<=>x-100/55 + x-100/53 = x-100/45 + x-100/47
<=>(x-100)(1/55 + 1/53 - 1/45 - 1/47 )=0
vi (1/55 + 1/53 - 1/45 - 1/47 ) luon khac 0 nen x-100=0 <=>x=100
a) \(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\)
\(\Leftrightarrow15x-9x+6=45-10x+25\)
\(\Leftrightarrow15x-9x+10x=45+25-6\)
\(\Leftrightarrow16x=64\)
\(\Leftrightarrow x=4\)
b) \(x^2-9+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\x+7=0\Leftrightarrow x=-7\end{matrix}\right.\)
c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)
\(\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)
\(\Leftrightarrow x+4+x^2-4x+2x-8=5x-4\)
\(\Leftrightarrow x^2+x-4x+2x-5x=-4+8-4\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\Leftrightarrow x=6\end{matrix}\right.\)
a) 15x - 3(3x - 2) = 45 - 5(2x - 5)
\(\Leftrightarrow\) 15x - 9x + 6 = 45 - 10x + 25
\(\Leftrightarrow\) 6x + 10x = 70 - 6
\(\Leftrightarrow\) 16x = 64
\(\Leftrightarrow\) x = 4
Vậy.......................
b) x2 - 9 + 4(x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 3) + 4(x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 3 + 4) = 0
\(\Leftrightarrow\) (x - 3)(x + 7) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)
Vậy........................
c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)
\(\Leftrightarrow\) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\) (đk: x\(\ne\pm\)4)
\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}+\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x-4}{\left(x+4\right)\left(x-4\right)}\)
\(\Leftrightarrow\) x + 4 + x2 - 4x + 2x - 8 = 5x - 4
\(\Leftrightarrow\) x2 - x - 5x - 4 + 4 = 0
\(\Leftrightarrow\) x2 - 6x = 0
\(\Leftrightarrow\) x(x - 6) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=6\left(tmđk\right)\end{matrix}\right.\)
Vậy...............
\(\frac{x}{40}-\frac{x}{45}=\frac{3}{2}\)
\(\Leftrightarrow\frac{9x-8x}{360}=\frac{3}{2}\)
\(\Leftrightarrow2x=3.360\)
\(\Leftrightarrow2x=1080\)
\(\Leftrightarrow x=540\)
\(\frac{x}{40}-\frac{x}{45}=\frac{3}{2}\)
\(\Leftrightarrow\frac{18x}{720}-\frac{16x}{720}=\frac{1080}{720}\)
\(\Rightarrow18x-16x=1080\)(KHỬ MẪU)
\(\Leftrightarrow2x=1080\)
\(\Leftrightarrow x=\frac{1080}{2}\)
\(\Leftrightarrow x=540\)
Vậy tập nghiệm của phương trình là \(S=\left\{540\right\}\)