
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(x^2+x=t\) thì pt thành
\(t^2+4t=12\Rightarrow t^2+4t-12=0\)
\(\Rightarrow t^2-2t+6t-12=0\)
\(\Rightarrow t\left(t-2\right)+6\left(t-2\right)=0\)
\(\Rightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+x=2\\x^2+x=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+2\right)=0\\x^2+x+\frac{1}{4}+\frac{23}{4}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1;x=-2\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\left(loai.\right)\end{cases}}\)
(x2 + x)2 + 4(x2 + x) = 12
<=> x4 + 2x3 + x2 + 4x2 + 4x = 12
<=> x4 + 2x3 + 5x2 + 4x - 12 = 0
<=> x4 - x3 + 3x3 - 3x2 + 8x2 - 8x + 12x - 12 = 0
<=> x3(x - 1) + 3x2(x - 1) + 8x(x - 1) + 12(x - 1) = 0
<=> (x - 1)(x3 + 3x2 + 8x + 12) = 0
<=> (x - 1)(x3 + 2x2 + x2 + 2x + 6x + 12) = 0
<=> (x - 1)[x2(x + 2) + x(x + 2) + 6(x + 2)] = 0
<=> (x - 1)(x + 2)(x2 + x + 6) = 0
<=> (x - 1)(x + 2)[(x2 + 2x\(\frac{1}{2}\)+ \(\frac{1}{4}\)) + \(\frac{23}{4}\)] = 0
<=> (x - 1)(x + 2)[(x + \(\frac{1}{2}\))2 + \(\frac{23}{4}\)] = 0
<=> x - 1 = 0 hay x + 2 = 0 (vì (x + \(\frac{1}{2}\))2 + \(\frac{23}{4}\)> 0)
<=> x = 1 I <=> x = -2


a) \(x^4+2x^3-12x^2-13x+42=0\)
\(\Leftrightarrow x^4+3x^3-x^3-3x^2-9x^2-27x+14x+42=0\)
\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)-9x\left(x+3\right)+14\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-9x+14\right)=0\)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x^2+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)
Ta có:
\(x^2+x+6=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...........

5.
P = ( x - 1 )( x + 2 )( x + 3 )( x + 6 ) < sửa rồi nhé :v >
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 ) (1)
Đặt t = x2 + 5x
(1) = ( t - 6 )( t + 6 )
= t2 - 36 ≥ -36 ∀ t
Dấu "=" xảy ra khi t = 0
=> x2 + 5x = 0
=> x( x + 5 ) = 0
=> x = 0 hoặc x = -5
=> MinP = -36 <=> x = 0 hoặc x = -5
6.
a) ( x2 + x )2 + 4( x2 + x ) = 12
Đặt t = x2 + x
pt <=> t2 + 4t = 12
<=> t2 + 4t - 12 = 0
<=> t2 - 2t + 6t - 12 = 0
<=> t( t - 2 ) + 6( t - 2 ) = 0
<=> ( t - 2 )( t + 6 ) = 0
<=> ( x2 + x - 2 )( x2 + x + 6 ) = 0
<=> x2 + x - 2 = 0 hoặc x2 + x + 6 = 0
+) x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
+) x2 + x + 6 = ( x2 + x + 1/4 ) + 23/4 = ( x + 1/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> x ∈ { -2 ; 1 }
b) x2 - 12x + 36 = 81
<=> ( x - 6 )2 = ( ±9 )2
<=> x - 6 = 9 hoặc x - 6 = -9
<=> x = 15 hoặc x = -3

Bài 2
Ta có :
\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Khi đó:
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)
=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
Giải phương trình ta được x = 3

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x+2\right)+\left(x^2-2x+1\right)\left(x-2\right)=12\)
\(\Leftrightarrow x^3+2x^2+2x^2+4x+x+2+x^3-2x^2-2x^2+4x+x-2=12\)
\(\Leftrightarrow2x^3+10x=12=>2x^3+10-12=0=>2x^3-2x+12x-12=0\)
\(=>2x\left(x^2-1\right)+12\left(x-1\right)=0=>2\left(x-1\right)\left[x\left(x^2-1\right)+6\right]=0=>x=1\)

b) Đặt x2 + x + 1 = t > 0 (dễ c/m t > 0 rồi ha)
Khi đó, pt tương đương: \(t\left(t+1\right)=12\Leftrightarrow t^2+t-12=0\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-4\left(L\right)\end{matrix}\right.\)
t = 3 suy ra \(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
c) Chị xem lại đề giúp em ạ.
\(\left(x^2+x\right)-4\left(x^2+x\right)=12\)
\(\Leftrightarrow x^2+x-4x^2-4x-12=0\)
\(\Leftrightarrow-3x^2-3x-12=0\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Leftrightarrow\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\) (vô lí)
-Vậy S=∅