Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)
đk: x >/ 0
(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)
Kl: \(x=\dfrac{392}{169}\)
b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)
đk: x >/ 5
(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)
Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)
Kl: x=-6
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)
Đk: \(x\ge\dfrac{4}{5}\)
(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)
Kl: x=12
Quên mất mình đánh nhầm.
ĐKXĐ: \(x\ge-\frac{1}{2}\).
PT đã cho tương đương với:
\(\left(\sqrt{2x+1}-3\right)-\left(\sqrt[3]{x+4}-2\right)=2x^2-5x-12\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}-\frac{x-4}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=\left(x-4\right)\left(2x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\Leftrightarrow x=4\\\frac{2}{\sqrt{2x+1}+3}-\frac{1}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=2x+3\left(1\right)\end{matrix}\right.\).
Với \(x\ge-\frac{1}{2}\) ta có: \(VT_{\left(1\right)}\le\frac{2}{3};VP\ge2\).
Do đó (1) vô nghiệm.
Vậy phương trình có nghiệm duy nhất: x = 4.
ĐKXĐ: \(x\ge-\frac{1}{2}\).
PT đã cho tương đương với:
\(\left(\sqrt{2x+1}-3\right)-\left(\sqrt[3]{x+4}-2\right)=2x^2-5x-12\)
\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}-\frac{x-4}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=\left(x-4\right)\left(2x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{\sqrt{2x+1}+3}-\frac{1}{\left(\sqrt[3]{x+4}\right)^2+2\sqrt[3]{x+4}+4}=2x+3\left(1\right)\end{matrix}\right.\).
Với \(x\ge-\frac{1}{2}\) ta có: \(VT_{\left(1\right)}\le\frac{1}{3};VP_{\left(1\right)}\ge2\).
Do đó (1) vô nghiệm.
Vậy x = 4 là nghiệm duy nhất của phương trình.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x-2+\sqrt{2x}-\sqrt[4]{5x+6}=0\)
\(\Leftrightarrow x-2+\frac{\left(2x\right)^2-\left(5x+6\right)}{\left(\sqrt{2x}+\sqrt[4]{5x+6}\right)\left(2x+\sqrt{5x+6}\right)}=0\)
\(\Leftrightarrow x-2+\frac{\left(x-2\right)\left(4x+3\right)}{\left(\sqrt{2x}+\sqrt[4]{5x+6}\right)\left(2x+\sqrt{5x+6}\right)}=0\)
\(\Leftrightarrow\left(x-2\right)\left(1+\frac{4x+3}{\left(\sqrt{2x}+\sqrt[4]{5x+6}\right)\left(2x+\sqrt{5x+6}\right)}\right)=0\)
\(\Leftrightarrow x-2=0\Rightarrow x=2\)
a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}
\(\sqrt{3x-5}=\sqrt{7x-1}\)
\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)
\(\left|3x-5\right|=\left|7x-1\right|\)
\(3x-5=7x-1\)
\(-4x=4\) => x = -1
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v