\(x^2+9x+20=2\sqrt{3x+10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2016

Đk:\(x\ge-\frac{10}{3}\)

\(pt\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+9\right)-\left(2\sqrt{3x+10}-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+3\left(x+3\right)-2\frac{\left(3x+10\right)-1}{\sqrt{3x+10}+2}=0\)(do \(\sqrt{3x+10}+2>0\) )

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)+3-2\frac{3}{\sqrt{3x+10}+2}\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)+3-\frac{6}{\sqrt{3x+10}+2}\right]=0\)

Do \(\sqrt{3x+10}+2\ge0\) với mọi x

\(\Rightarrow\frac{6}{\sqrt{3x+10}}+2\le3\)

\(\Rightarrow\left(x+3\right)+3-\frac{6}{\sqrt{3x+10}+2}>0\)(loại)

\(\Rightarrow x+3=0\Leftrightarrow x=-3\)(thỏa mãn)

Vậy pt có nghiệm duy nhất x=-3.

6 tháng 11 2018

a) ĐK:  \(x\ge2\)

\(\sqrt{x-1}=1+\sqrt{x-2}\)

<=>\(x-1=1+x-2+2\sqrt{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loại\right)\\x=2\left(tm\right)\end{cases}}}\)

b) ĐK: x>=10/3

Đặt:\(\sqrt{3x-10}=t\left(t\ge0\right)\Rightarrow3x=t^2+10\)

\(x^2+3\left(t^2+10\right)+20=2t\)

\(\Leftrightarrow x^2+3t^2-2t+50=0\)

\(\Leftrightarrow x^2+3\left(t^2-2.t.\frac{1}{3}+\frac{1}{9}\right)-\frac{1}{3}+50=0\)

<=>\(x^2+3\left(t-\frac{1}{3}\right)^2+\frac{149}{3}=0\)phương trình voo ngiệm

vào trong câu hỏi khác của mình rồi trả lời với mình xin các cậu đúng cho 3 k 

19 tháng 7 2017

\(PT\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

19 tháng 7 2017

hichic T_T!!! vậy mà cứ chăm chăm đặt ẩn phụ T_T!!!!! Mơn nhak ^^!

11 tháng 9 2016

b sai \(\sqrt{x^2+6x+9}\) ms đúng

11 tháng 9 2016

Giai đi nha

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

a) \(3x^2+4x+10=2\sqrt{14x^2-7}=2\sqrt{7(2x^2-1)}\)

Áp dụng BĐT AM-GM:

\(3x^2+4x+10\leq 7+(2x^2-1)\)

\(\Leftrightarrow x^2+4x+4\leq 0\)

\(\Leftrightarrow (x+2)^2\leq 0\)

Mà \((x+2)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+2)^2=0\)

\(\Leftrightarrow x=-2\) (thử lại thấy thỏa mãn)

b) Có:

\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)

\(\Leftrightarrow \sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

\(\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-(9x-3)=0\)

\(\Leftrightarrow (9x-3)\left(\frac{1}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-3=0\Leftrightarrow x=\dfrac{1}{3}\\\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\left(2\right)\end{matrix}\right.\)

Xét (2):

Ta thấy:

\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\geq \sqrt{4x^2-4x+4}=\sqrt{(2x-1)^2+3}\geq \sqrt{3}>1\)

Do đó \((2)\) vô lý

Vậy PT có nghiệm \(x=\frac{1}{3}\)

17 tháng 9 2017

giỏi quá ><

12 tháng 8 2019

Câu 1 :

Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý) 

Vậy pt vô nghiệm

Câu 2 : 

\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy x=-1

Câu 3 : 

\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)

Câu 4 : 

\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x=15\)

NV
10 tháng 11 2019

ĐKXĐ: ...

\(x^2+6x+9+3x+10-2\sqrt{3x+10}+1=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\\sqrt{3x+10}-1=0\end{matrix}\right.\) \(\Rightarrow x=-3\)

2/\(\frac{2}{xy}=\frac{1}{z^2}+4\)

\(\frac{1}{x}+\frac{1}{y}=2-\frac{1}{z}\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}=4+\frac{1}{z^2}-\frac{4}{z}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+4=\frac{1}{z^2}+4-\frac{4}{z}\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=-\frac{4}{z}\Rightarrow\frac{1}{z}=-\frac{1}{4x^2}-\frac{1}{4y^2}\)

Thay vào \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ta được:

\(\frac{1}{x}+\frac{1}{y}-\frac{1}{4x^2}-\frac{1}{4y^2}+2=0\)

\(\Leftrightarrow\frac{1}{4x^2}-\frac{1}{x}+1+\frac{1}{4y^2}-\frac{1}{y}+1=0\)

\(\Leftrightarrow\left(\frac{1}{2x}-1\right)^2+\left(\frac{1}{2y}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{2x}-1=0\\\frac{1}{2y}-1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

20 tháng 8 2019

\(dk:x\ge\frac{-10}{3}\)

\(x^2+9x+20=2\sqrt{3x+10}\Leftrightarrow x^2+6x+10+\left(3x+10\right)-2\sqrt{3x+10}=0\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\Rightarrow\left\{{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\left(tmdk\right)\)

20 tháng 8 2019

Điều kiện 3x + 10 ≥ 0 =>x ≥ -10 /3
Pt <=> (3x + 10)² + 7(3x + 10) + 10 = 18\(\sqrt{\left(3x+10\right)}\)
Đặt y = \(\sqrt{\left(3x+10\right)}\) ≥ 0 pt trở thành
y⁴ + 7y² - 18y + 10 = 0
<=> (y - 1)²(y² + 2y + 10) = 0
<=> (y-1)^2 [(y+1)^2 +9] =0
mà (y+1)^2 +9 > 0 =>y=1 => x= -3

25 tháng 10 2018

Hỏi đáp Toán