\(x^2+2x-3=\sqrt{x+5}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

\(\Rightarrow-\left(x+5\right)-\sqrt{x+5}+x^2+3x+2=0\)

Đặt a = \(\sqrt{x+5}\left(a\ge0\right)\)

\(\Rightarrow-a^2-a+x^2+3x+2=0\)

Có: \(\Delta=1+4x^2+12x+8=4x^2+12x+9=\left(2x+3\right)^2\)

\(\Rightarrow\sqrt{\Delta}=2x+3\)

\(\Rightarrow a=\frac{1+2x+3}{-2}=-x-2\) hoặc \(a=\frac{1-2x-3}{-2}=1+x\)

+) Với a = -x - 2 => \(\sqrt{x+5}=-x-2\left(x\le-2\right)\)

\(\Rightarrow x+5=x^2+4x+4\)

\(\Rightarrow x^2+3x-1=0\)

\(\Rightarrow x=\frac{-3+\sqrt{13}}{2}\) (loại) hoặc \(x=\frac{-3-\sqrt{13}}{2}\) (nhận)

Với a = 1 + x \(\Rightarrow\sqrt{x+5}=1+x\left(x\ge-1\right)\)

\(\Rightarrow x+5=x^2+2x+1\)

\(\Rightarrow x^2+x-4=0\)

\(\Rightarrow x=\frac{-1+\sqrt{17}}{2}\) (nhận) hoặc \(x=\frac{-1-\sqrt{17}}{2}\) (loại)

Vậy x = \(\frac{-3-\sqrt{13}}{2};x=\frac{-1+\sqrt{17}}{2}\)

24 tháng 7 2018

\(a.\sqrt[3]{2x-1}=3\)

\(\Leftrightarrow2x-1=27\)

\(\Leftrightarrow x=14\)

\(b.\sqrt[3]{x-5}=0,9\)

\(\Leftrightarrow x-5=0,729\)

\(\Leftrightarrow x=5,729\)

\(c.\sqrt[3]{x^2-2x+28}=3\)

\(\Leftrightarrow x^2-2x+28=27\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

24 tháng 7 2018

d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)

\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)

Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)

\(\Rightarrow8x^2-27x-18.x.5=125\)

\(\Leftrightarrow8x^2-117x-125=0\)

\(\Leftrightarrow8x^2+8x-125x-125=0\)

\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

8 tháng 9 2017

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

9 tháng 9 2017

\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3

<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3

<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3

<=> x - 1 + x - 2 = 3

<=> 2x - 3 = 3

<=> x = \(\dfrac{6}{2}\)= 3

b ,

\(\sqrt{x^2-10x+25}=3-19x\)

<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)

<=> \(\left|x-5\right|=3-19x\)

<=> \(x-5=3-19x\)

\(\Leftrightarrow x+19x=3+5\)

\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)

NV
14 tháng 6 2019

a/ \(\Leftrightarrow9\left(2x-1\right)=\left(2x-5\right)^2\) (\(x\ge\frac{5}{2}\))

\(\Leftrightarrow4x^2-38x+34=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{17}{2}\end{matrix}\right.\)

b/ \(\Leftrightarrow25\left(x-2\right)=\left(x+2\right)^2\) (\(x\ge-2\))

\(\Leftrightarrow x^2-21x+54=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=18\end{matrix}\right.\)

c/ ĐKXĐ: \(x\ge5\)

\(\Leftrightarrow\sqrt{x+2}=\sqrt{2x-10}+1\)

\(\Leftrightarrow x+2=2x-10+1+2\sqrt{2x-10}\)

\(\Leftrightarrow2\sqrt{2x-10}=11-x\) (\(x\le11\))

\(\Leftrightarrow4\left(2x-10\right)=\left(11-x\right)^2\)

\(\Leftrightarrow x^2-30x+161=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\\x=23\left(l\right)\end{matrix}\right.\)

b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)

Đặt \(x^2+5x+4=a\) 

Theo đề, ta có \(5\sqrt{a+24}=a\)

=>25a+600=a2

=>a=40 hoặc a=-15

=>x2+5x-36=0

=>(x+9)(x-4)=0

=>x=4 hoặc x=-9

c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)

Đặt \(x^2+5x=a\)

Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)

\(\Leftrightarrow\sqrt[3]{8a}=a+2\)

=>(a+2)3=8a

=>\(a^3+6a^2+12a+8-8a=0\)

\(\Leftrightarrow a^3+6a^2+4a+8=0\)

Đến đây thì bạn chỉ cần bấm máy là xong

12 tháng 11 2017

Hong Ra On chuyên gì thế hả sao gọi mình là sao

\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)

\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\sqrt{\dfrac{\left(y-3\right)^2}{2}}+\sqrt{\dfrac{\left(y+1\right)^2}{2}}=2\sqrt{2}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\left|\dfrac{\left(y-3\right)}{\sqrt{2}}\right|+\left|\dfrac{\left(y+1\right)}{\sqrt{2}}\right|=\left|\dfrac{4}{\sqrt{2}}\right|=2\sqrt{2}=VP\end{matrix}\right.\)đẳng thức khi

\(7\ge x\ge\dfrac{5}{2}\)

kết luận

nghiệm của pt là : \(7\ge x\ge\dfrac{5}{2}\)

NV
24 tháng 11 2018

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)

Bình phương 2 vế:

\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)

\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)

Vậy pt có 2 nghiệm \(x=-1;x=-5\)

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)

Phương trình trở thành:

\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)

24 tháng 11 2018

a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)

\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)

vậy \(S=\left\{-1;-2;-5\right\}\)