K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2015

Đề bài sai nhé, tìm GTNN chứ không phải GTLN. Bài này không có GTLN.

Biệt thức \(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\) với mọi \(m\). Do đó phương trình đã cho luôn có 2 nghiệm phân biệt.

Theo định lý Vi-et ta có \(x_1+x_2=m-1,x_1x_2=-m^2+m-2\to x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(\to x_1^2+x_2^2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5.\)

Giá trị lớn nhất không tồn tại vì khi m lớn tùy ý thì \(x_1^2+x_2^2\) lớn tùy ý.

Ta có \(3m^2-4m+5=\frac{1}{3}\left(3m-2\right)^2+5-\frac{4}{3}\ge5-\frac{4}{3}=\frac{11}{3}.\) Suy ra \(x_1^2+x_2^2\ge\frac{11}{3}.\) Dấu bằng xảy ra khi và chỉ khi \(m=\frac{2}{3}\). Vậy \(m=\frac{2}{3}\) thì \(x_1^2+x_2^2\)  đạt giá trị nhỏ nhất.

17 tháng 7 2020

+) ĐK: x khác -5 

\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11\)

<=> \(x^2+\frac{25x^2}{\left(x+5\right)^2}-2.x\frac{5x}{\left(x+5\right)}+\frac{10x^2}{\left(x+5\right)}=11\)

<=> \(\left(x-\frac{5x}{x+5}\right)^2+\frac{10x^2}{x+5}=11\)

<=> \(\left(\frac{x^2}{x+5}\right)^2+\frac{10x^2}{x+5}-11=0\) ( đặt t = x^2/x+5 => có phương trình: t^2 + 10t - 11 = 0 => giải t => tìm x ) 

<=> \(\orbr{\begin{cases}\frac{x^2}{x+5}=1\\\frac{x^2}{x+5}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-x-5=0\\x^2+11x+55=0\left(vn\right)\end{cases}}\Leftrightarrow x=\frac{1}{2}\pm\frac{\sqrt{21}}{2}\)  ( thỏa mãn) 

\(x^2+\frac{25x^2}{\left(x+5\right)^2}=11ĐK:x\ne-5\)

\(\Leftrightarrow\frac{x^2\left(x+5\right)^2}{\left(x+5\right)^2}+\frac{25x^2}{\left(x+5\right)^2}=\frac{11\left(x+5\right)^2}{\left(x+5\right)^2}\)

Khử mẫu ta đc : \(\Leftrightarrow x^2\left(x+5\right)^2+25x^2=11\left(x+5\right)^2\)

\(\Leftrightarrow x^4+10x^3+25x^2+25x^2=11x^2+110x+275\)

\(\Leftrightarrow x^4+10x^3+50x^2-11x^2-110x-275=0\)

\(\Leftrightarrow x^4+10x^3+39x^2-110x-275=0\)

19 tháng 12 2015

Nguyễn Hữu Huy nói đúng đó

19 tháng 12 2015

Bằng 3 mà Tuấn Anh :3

Có phải bằng 2 đâu :3

24 tháng 11 2015

a) tại m=1 thì pt có dạng \(x^2-4x+3-2=0\) 

                                \(\Leftrightarrow x^2-4x+1=0\)

                                 \(\Leftrightarrow\left(2x-1\right)^2=0\)

                                 \(\Leftrightarrow x=\frac{1}{2}\)

a, \(x^2-mx+m-1=0\)

Thay m = 4 ta đc : 

\(x^2-4x+4-1=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

21 tháng 12 2015

\(\Leftrightarrow\left(x^2-9x+8\right)\left(x^2-6x+8\right)=7x^2\)

Xét x=0: x=0 không là nghiệm của phương trình

Xét x\(\ne\)0

pt \(\Leftrightarrow\left(x-9+\frac{8}{x}\right)\left(x-6+\frac{8}{x}\right)=7\)

Đặt t= x+8/x

Sau đó bạn giải pt tìm t, có t thế vào tìm được x

 

21 tháng 12 2015

ko có đâu bạn ^^ , câu này mình mới phát minh ra mà

5 tháng 4 2019

 \(ĐK:x\ge1\)

Pt (1)  <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)

<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)

<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)

<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)

+) Với y-1=0 <=> y=1

Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)

Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)

Ta có phương trình ẩn t:

\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)

Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)

Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)

Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)

+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)

Thế vào phương trình (2) ta có:

\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)

<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)

vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1

phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk

Với x=2 ta có: \(y=\sqrt{2-1}=1\)

Hệ có 1nghiem (2,1)

Kết luận:... (2, 1), (1,1)

6 tháng 4 2019

Em cảm ơn chị Nguyễn Linh Chi nhiều ạ!

29 tháng 1 2019

\(ĐK:-1\le x\le2\)

\(PT< =>\sqrt{\left(x+1\right)\left(2-x\right)}-\frac{3}{2}+2x^2-2x-1+\frac{3}{2}=0\)

\(< =>\frac{-x^2+x+2-\frac{9}{4}}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2x^2-2x+\frac{1}{2}=0\)

\(< =>\frac{-\left(x-\frac{1}{2}\right)^2}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2\left(x-\frac{1}{2}\right)^2=0\)

\(< =>\left(x-\frac{1}{2}\right)^2\left(\frac{-1}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2\right)=0\)

\(< =>\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\frac{-1}{\sqrt{\left(x+1\right)\left(2-x\right)}+\frac{3}{2}}+2=0\left(VL\right)\end{cases}}\)

\(< =>x=\frac{1}{2}\left(N\right)\)

Vậy S={1/2}