K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

\(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)

Đặt \(a=x^2-5x\Rightarrow a^2=\left(x^2-5x\right)^2\)

Thay vào đẳng thức ta có:

\(a^2+10a+24\)

\(=a^2+6a+4a+24\)

\(=a\left(a+6\right)+4\left(a+6\right)\)

\(=\left(a+4\right)\left(a+6\right)\)

\(=\left(x^2-5x+6\right)\left(x^2-5x+4\right)\)

\(=\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)\)

\(=\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[\left(x-1\right).x-4\left(x-1\right)\right]\)

\(=\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)\)

14 tháng 3 2017

Bài 2

Ta có :

\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)

\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)

Khi đó:

\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)

=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)

=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)

=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)

Giải phương trình ta được x = 3

3 tháng 1 2018

câu a bạn sai đề nha

b)

\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)

\(x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)

\(2\left(x^3+x^2+x\right)=2\left(x^4+x^2+1\right)\)

\(x^4-x^3+1-x=0\)

\(x^3\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^3-1\right)=0\)

\(\left[{}\begin{matrix}x-1=0\\x^3-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

4 tháng 1 2018

Bước thứ 2 là sao ko hỉu?

4 tháng 5 2016

Ủa,câu hỏi gì kỳ lạ thế? Có trả lời lun ak?

4 tháng 5 2016

giải giúp bạn kia mà ko đăng được nên gửi lên đây rồi gửi link

2 tháng 3 2016

f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0

<=>(x2-5x)2+10(x2-5x)+24=(x-4)(x-3)(x-2)(x-1)

TH1:x-4=0

=>x=4

TH2:x-3=0

=>x=3

TH3:x-2=0

=>x=2

TH4:x-1=0

=>x=1

vậy giá trị nguyên của x lần lượt là {1;2;3;4}

5 tháng 3 2018

a) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy .................

b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ...............

c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

P/s: tới đây bn tự giải tiếp nha

12 tháng 7 2015

\(1;x^2+7x+10=0\Rightarrow x^2+2x+5x+10=0\Rightarrow x\left(x+2\right)+5\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+5\right)=0\)

=> x + 2 = 0 hoặc x + 5 = 0

=> x = -2 hoặc x = - 5

2, x^4 - 5x^2 +  4 = 0 

x^4  - 4x^2  - x^2 + 4 = 0 

x^2 ( x^2 - 4) - ( x^2 - 4) = 0 

( x^2 - 1)( x^2 - 4) = 0 

( x - 1 )( x + 1)( x - 2)( x + 2) = 0

=> x= 1 hoặc x= -1 hoặc x = 2 hoặc x = - 2

Đúng cho mi8nhf mình giải tiếp cho

a: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)

\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)\)

b: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3 hoặc x=2

5 tháng 7 2016

1.

Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)

Thay vào pt:

\(\Rightarrow a^2+10a+24=0\)

\(\Leftrightarrow a^2+6a+4a+24=0\)

\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)

\(\Rightarrow x=3,x=2,x=4,x=1\)

T I C K mình sẽ giải típ cho cảm ơn

5 tháng 7 2016

típ nha

13 tháng 1 2019

\(\left(x^2+5x^2\right)-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow4x^2-10x-24=0\)

\(\Leftrightarrow\frac{-\left(-10\right)+\sqrt{\left(-10\right)^2-4.4.\left(-24\right)}}{2.4}\)

\(\Leftrightarrow\frac{10+\sqrt{484}}{2.4}\)

\(\Leftrightarrow\frac{10+\sqrt{484}}{8}\)

\(\Leftrightarrow\frac{-\left(-10\right)-\sqrt{\left(-10\right)^2-4.4.\left(-24\right)}}{2.4}\)

\(\Leftrightarrow\frac{10-\sqrt{\left(10\right)^2+4.4.24}}{2.4}\)

\(\Leftrightarrow\frac{10-\sqrt{484}}{8}\)

\(\Rightarrow\hept{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)

Sai đâu sửa hộ :)