Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{1-x}=\sqrt[3]{8}\) ( ĐK: \(x\le1\) )
\(\Leftrightarrow\sqrt{1-x}=2\)
\(\Leftrightarrow1-x=4\)
\(\Leftrightarrow x=-3\) ( Thỏa mãn )
b) \(\sqrt{4x^2-12x+9}=x+1\) ( ĐK : \(x\ge-1\) )
\(\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+3^2}=x+1\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-3\right|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\\3-2x=x+1\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\) ( Thỏa mãn )
c) \(x+\sqrt{x}-2=0\) ( ĐK : \(x\ge0\) )
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow x=1\) ( Thỏa mãn )
+) ĐKXĐ : \(x\le1\)
\(\sqrt{1-x}=\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{1-x}=2\)
\(\Leftrightarrow1-x=4\)
\(\Leftrightarrow x=-3\left(TM\right)\)
+) \(\sqrt{4x^2-12x+9}=x+1\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-3\right|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\left(x\ge\frac{3}{2}\right)\\2x-3=-x-1\left(x< \frac{3}{2}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=3+1\\2x+x=3-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\3x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}\left(TM\right)}}\)
+) ĐKXĐ : \(x\ge0\)
\(x+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=2\)
+) \(\hept{\begin{cases}\sqrt{x}=1\\\sqrt{x}+1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=1\end{cases}\Leftrightarrow}x=1\left(TM\right)}\)
+) \(\hept{\begin{cases}\sqrt{x}=2\\\sqrt{x}+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\x=0\end{cases}}}\left(TM\right)\)
\(\left\{{}\begin{matrix}x\ge8\\x-\sqrt{x-8}-3\sqrt{x}+1=0\end{matrix}\right.\)
\(\left(1-\sqrt{x-8}\right)+\left(x-3\sqrt{x}\right)=0\)
\(\dfrac{9-x}{1+\sqrt{x-8}}+\dfrac{x^2-9x}{x+3\sqrt{x}}=0\)
\(\left(9-x\right)\left(\dfrac{1}{1+\sqrt{x-8}}+\dfrac{x}{x+3\sqrt{x}}\right)=0\)
x>=8 => x =9 là duy nhất
a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)
\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-4x+1=x+1\)
\(\Leftrightarrow x^2-4x-x=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện
Vậy x=0 hoặc x=5
2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)
Đk: x>=3 hoặc x=1
pt (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )
<=> x-1=0
<=> x=1 ( thỏa mãn điều kiện)
\(ĐKXĐ:x\ge8\)
Ta có: \(pt\Leftrightarrow x+1=3\sqrt{x}+\sqrt{x-8}\)
Áp dụng bđt AM-GM:
\(3\sqrt{x}\le\frac{x+9}{2}\)
\(\sqrt{x-8}=\sqrt{1\left(x-8\right)}\le\frac{x-7}{2}\)
Cộng vế:
\(3\sqrt{x}+\sqrt{x-8}\le x+1."="\Leftrightarrow x=9\)
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
Làm hơi tắt xíu, có gì ko hiểu cmt nha :>
\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)
\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)
\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)
Câu cuối chưa nghĩ ra, sorry :<
\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)
\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x}\)
Điều kiện x >=8
PT <=> \(x+1=\sqrt{x-8}+3\sqrt{x}\) Bình phương 2 vế <=> \(x^2+2x+1=x-8+6\sqrt{x\left(x-8\right)}+9x\)
<=> \(x^2-8x+9=6\sqrt{x^2-8x}\). Lại bình phương 2 vế ta được:
x4-16x3+64x2+18x2-144x+81=36x2-288x
<=> x4-16x3+46x2+144x+81=0 <=> x4-9x3-7x3+63x2-17x2+153x-9x+81=0
<=> x3(x-9)-7x2(x-9)-17x(x-9)-9(x-9)=0 <=> (x-9)(x3-7x2-17x-9)=0 <=> (x-9)(x3+x2-8x2-8x-9x-9)=0
<=> (x-9)[x2(x+1)-8x(x+1)-9(x+1)]=0
<=> (x-9)(x+1)(x2-8x-9)=0 <=> (x-9)(x+1)[(x2-1)-8(x+1)]=0
<=> (x-9)(x+1)(x+9)(x-9)=0 <=> (x-9)2(x+1)2=0
Mặt khác, do x >=8 => (x+1)2 >0
=> PT có nghiệm duy nhất là: (x-9)2=0 <=> x=9
Đáp số: x=9
Đặt GTNN x = (-2) . Ta có:
ĐKXĐ : \(\left(-2\right)\le x\le9\).
\(x-\sqrt{x-8}-3\sqrt{x}+1=0\)
\(\Leftrightarrow\left(x-8\right)-\sqrt{x-8}-\left(3-x\right)-3\sqrt{x}+3=0\)
\(\Leftrightarrow x-\left[\left(8+3\right)+\left(-2\right)\right]=0\)
\(\Leftrightarrow x-9=0\)
\(\Leftrightarrow x=9\)
Vậy dấu "=" xảy ra khi khi và chỉ khi x = 9