
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


E đây cx ngu Toán,sai thì thoy đừng ném đá
(x+3)^3 - (x+1)^3=56
<=>x^3 + 9.x^2+27x+27-x^3-3.x^2-3x-1=56
<=>6.x^2+24x+26=56
<=>6.x^2+24x-3=0
<=>6x^2-6x+30x=0
<=>6x(x-1)+30(x-1)=0
<=>(x-1)(6x+30)=0
<=>x=\(\hept{\begin{cases}1\\-5\end{cases}}\)



a,\(x\left(x+1\right)\left(x^2+x+2\right)\)
\(=\left(x^2+x\right)\left(x^2+x+2\right)\)
ĐẶT X^2+X=A\(\Rightarrow\left(x^2+x\right)\left(x^2+x+2\right)=a\left(a+2\right)=42\)
\(\Rightarrow a=\pm1,\pm2,\pm3,\pm6,\pm7,\pm42\)
SUY RA TÌM ĐC X
b,
a) \(x\left(x+1\right)\left(x^2+x-2\right)=48\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=48\)
Đặt \(x^2+x=t\Rightarrow t\left(t-2\right)=48\Leftrightarrow t^2-2t-48=0\Leftrightarrow\orbr{\begin{cases}x=-8\\x=6\end{cases}}\)
Với x = -8, ta có: \(x^2+x=-8\Leftrightarrow x^2+x+8=0\) (Vô nghiệm)
Với x = 6, ta có: \(x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;2\right\}\)
b) \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow\left(x-1+2x+3\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x+3\right)+\left(2x+3\right)^2\right]=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13\right)=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(3x^2+9x+13-9x^2+6x-4\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(-6x^2+15x+9\right)=0\)
TH1: \(3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
TH2: \(-6x^2+15x+9=0\Leftrightarrow\left(x-3\right)\left(-6x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{2}\end{cases}}\)
Đặt \(x+2=t\) ta có:
\(pt\Leftrightarrow\left(t+1\right)^3-\left(t-1\right)^3=56\)
\(\Leftrightarrow t^3+3t^2+3t+1-t^3+3t^2-3t+1=56\)
\(\Leftrightarrow6t^2-54=0\Leftrightarrow6\left(t-3\right)\left(t+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+2=3\\x+2=-3\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
(x + 3)3 - (x + 1)3 = 56
<=> x3 + 9 . x2 + 27x + 27 - x3 - 3 . x2 - 3x - 1 = 56
<=> 6 . x2 + 24x + 26 = 56
<=> 6 . x2 + 24x - 30 = 0
<=> 6 . x2 - 6x + 30x - 30 = 0
<=> 6x . (x - 1) + 30 . (x - 1) = 0
<=> (x - 1)(6x + 30) = 0
<=> \(\orbr{\begin{cases}x=1\\x=5\end{cases}}\)