\(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 8 2021

ĐK: \(x\ge-\frac{5}{4}\)

\(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)

\(\Leftrightarrow3x^3-6x^2-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}+15x+12=0\)

\(\Leftrightarrow3x^3-6x^2+4x-1+3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x^2-3x+1\right)+3.\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+2\sqrt{4x+5}.\frac{4x-4}{\sqrt{4x+5}+3}=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x^2-3x+1+\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)(thỏa mãn)

15 tháng 9 2019

Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.

a) ĐK: \(x\ge-\frac{1}{4}\)

PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)

\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)

b) ĐK: \(x\ge-\frac{1}{2}\)

PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)

c) ĐK: \(x\ge-1\)

PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.

d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D

\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D

f) Liên hợp đi cho nó khỏe:v

15 tháng 9 2019

f) Liên hợp đi cho nó khỏe:D

ĐK: \(x\ge\frac{1}{5}\)

PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)

\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)

Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

8 tháng 9 2017

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

b: \(\Leftrightarrow\left(x^2+5x+4\right)=5\sqrt{x^2+5x+28}\)

Đặt \(x^2+5x+4=a\) 

Theo đề, ta có \(5\sqrt{a+24}=a\)

=>25a+600=a2

=>a=40 hoặc a=-15

=>x2+5x-36=0

=>(x+9)(x-4)=0

=>x=4 hoặc x=-9

c: \(\Leftrightarrow x^2+5x=2\sqrt[3]{x^2+5x-2}-2\)

Đặt \(x^2+5x=a\)

Theo đề, ta có: \(a=2\sqrt[3]{a}-2\)

\(\Leftrightarrow\sqrt[3]{8a}=a+2\)

=>(a+2)3=8a

=>\(a^3+6a^2+12a+8-8a=0\)

\(\Leftrightarrow a^3+6a^2+4a+8=0\)

Đến đây thì bạn chỉ cần bấm máy là xong

17 tháng 9 2019

a/ Dặt \(\sqrt{x+1}=a\ge0\)

\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)

\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)

\(\Leftrightarrow4a=a^4+3a^2\)

\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

17 tháng 9 2019

b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3\)

Từ đây ta có:

\(a-b=\frac{a^2-b^2}{5}\)

\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)

Thế vô làm tiếp