![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-6x+26=6\sqrt{2x+1}\) (ĐKXĐ : \(x\ge-\frac{1}{2}\) )
\(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)-\left(6\sqrt{2x+1}-18\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\sqrt{2x+1}-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-6\left(\frac{2x+1-9}{\sqrt{2x+1}+3}\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)-\frac{12\left(x-4\right)}{\sqrt{2x+1}+3}=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2-\frac{12}{\sqrt{2x+1}+3}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-2-\frac{12}{\sqrt{2x+1}+3}=0\end{array}\right.\)
Với x - 4 = 0 => x = 4 (TMĐK)
Với \(x-2-\frac{12}{\sqrt{2x+1}+3}=0\Rightarrow x=4\left(TM\right)\)
Vậy phương trình có nghiệm x = 4
b) \(x+\sqrt{2x-1}=3+\sqrt{x+2}\) ( ĐKXĐ : \(x\ge\frac{1}{2}\))
\(x+\sqrt{2x-1}-3-\sqrt{x+2}=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}-\sqrt{5}\right)-\left(\sqrt{x+2}-\sqrt{5}\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\frac{2x-1-5}{\sqrt{2x-1}+\sqrt{5}}-\frac{x+2-5}{\sqrt{x+2}+\sqrt{5}}+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1\right)=0\)
Vì \(x\ge\frac{1}{2}\) nên \(\frac{2}{\sqrt{2x-1}+\sqrt{5}}-\frac{1}{\sqrt{x+2}+\sqrt{5}}+1>0\) . Do đó x-3 = 0 => x = 3 (TMĐK)
Vậy phương trình có nghiệm x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c1 cậu đặt cái trong căn =a
=>pt<=> a^2-2x=2xa-a
c2 cậu đưa về dang a^2=b^2
bài 2 nhé
đặt \(a=\sqrt{x+2}\)
ta có pt<=>
\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)
\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)
\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
![](https://rs.olm.vn/images/avt/0.png?1311)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\left(đk:x\ge-\frac{1}{2}\right)\) (*)
Đặt \(2\sqrt{x+1}=a\left(a\ge0\right)\) , \(\sqrt{2x+1}=b\left(b\ge0\right)\)
Có \(a^2-b^2=4\left(x+1\right)-2x-1=4x+4-2x-1=2x+3\)
Có \(2x+3=a+b\)
=> \(a^2-b^2=a+b\)( do \(a^2-b^2=2x+3\))
<=> \(\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a-b-1\right)=0\)
=> \(\left[{}\begin{matrix}a=-b\\a=b+1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2\sqrt{x+1}=-\sqrt{2x+1}\\2\sqrt{x+1}=\sqrt{2x+1}+1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}4\left(x+1\right)=2x+1\\4\left(x+1\right)=2x+1+2\sqrt{2x+1}+1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x+4-2x-1=0\\4x+4-2x-1-1=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x+3=0\\2x+2=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-\frac{3}{2}\left(ktm\right)\\x+1=\sqrt{2x+1}\end{matrix}\right.\)
=> \(x+1=\sqrt{2x+1}\)
<=> x2+2x+1=2x+1
<=> x2=0
<=>x=0(t/m pt (*))
Vậy pt (*) có tập nghiệm \(S=\left\{0\right\}\)
b, \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\) (*) (đk: \(\frac{1}{4}\le x\le\frac{3}{8}\))
<=>\(2-6x=\sqrt{4x-1}-\sqrt{3-8x}\)
Đặt \(\sqrt{3-8x}=a\left(a\ge0\right)\) , \(\sqrt{4x-1}=b\left(b\ge0\right)\)
Có \(\left\{{}\begin{matrix}a^2-b^2=3-8x-4x+1\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=4-12x\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=2\left(2-6x\right)\\2-6x=b-a\end{matrix}\right.\)
=> \(\left(a+b\right)\left(a-b\right)=2\left(b-a\right)\)
<=> \(\left(a+b\right)\left(a-b\right)-2\left(b-a\right)=0\)
<=> \(\left(a-b\right)\left(a+b+2\right)=0\)
=> a-b=0(do a+b+2 >0 với \(a;b\ge0\))
<=> a=b <=> \(\sqrt{3-8x}=\sqrt{4x-1}\)<=> \(3-8x=4x-1\)
<=> \(3+1=4x+8x\)<=> \(4=12x\)
<=> \(x=\frac{1}{3}\)
Vậy pt (*) có tập nghiệm \(S=\left\{\frac{1}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x^2+2x+5}=-x^2-2x+1\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)
Ta thấy :
\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)
\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)
\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1
Vậy Phương trình có nghiệm x = -1 .
\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)
Ta thấy :
\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)
\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)
\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)
\(\Rightarrow VT\ge4\) ; \(VP\le4\)
\(\Rightarrow VT=VP=4\)
Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3
Vậy phương trình có nghiệm x = 3 .