\(\sqrt{x+3}+\sqrt{x^2-9}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Điều kiện hơi sót một chút nên pt bị sót nghiệm em ạ.

ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\x^2-9\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x^2\ge9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\x\ge3\end{matrix}\right.\)

Cách làm ổn rồi nhưng em nên nói rõ là: \(\sqrt{A}\ge0\);\(\sqrt{B}\ge0\)

\(\Rightarrow\sqrt{A}+\sqrt{B}\ge0\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\sqrt{A}=0\\\sqrt{B}=0\end{matrix}\right.\)

13 tháng 12 2019

chuyển 1 trong hai cái qua 1 vế để có dạng √A=√B rồi bình phương hai vế lên giải. nhớ đặt ĐK và kết luận nghiệm

NV
23 tháng 11 2019

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)

\(\Leftrightarrow\sqrt{x^2+9x}+2=\sqrt{x^2+5x+4}\)

\(\Leftrightarrow x^2+9x+4+4\sqrt{x^2+9x}=x^2+5x+4\)

\(\Leftrightarrow\sqrt{x^2+9x}=-4x\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\)

Dấu "=" xảy ra khi và chỉ khi \(x=0\)

b/ Lại 1 câu sai đề nữa, dễ dàng chứng minh pt này vô nghiệm:

\(\Leftrightarrow x^2-2x+4x-\sqrt{x^2-2x+24}+\frac{1}{4}+x^2+\frac{183}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+24}-\frac{1}{2}\right)^2+x^2+\frac{183}{4}=0\)

Phương trình hiển nhiên vô nghiệm do vế trái dương

1 tháng 10 2019

a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)

\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)

Với x = 0 \(\Rightarrow pttm\)

Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)

1 tháng 10 2019

b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)

\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)

4 tháng 12 2019

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

5 tháng 12 2019

@tran duc huy Bình phương rồi chuyển vế nha.

19 tháng 8 2019

\(1+\sqrt{x^2-4x+3}-x=0\)

\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)

\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)

\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)

\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)

Bài 1: 

\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)

\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)

hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)