Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)
\(\Leftrightarrow\sqrt{x^2+9x}+2=\sqrt{x^2+5x+4}\)
\(\Leftrightarrow x^2+9x+4+4\sqrt{x^2+9x}=x^2+5x+4\)
\(\Leftrightarrow\sqrt{x^2+9x}=-4x\)
Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\)
Dấu "=" xảy ra khi và chỉ khi \(x=0\)
b/ Lại 1 câu sai đề nữa, dễ dàng chứng minh pt này vô nghiệm:
\(\Leftrightarrow x^2-2x+4x-\sqrt{x^2-2x+24}+\frac{1}{4}+x^2+\frac{183}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x^2-2x+24}-\frac{1}{2}\right)^2+x^2+\frac{183}{4}=0\)
Phương trình hiển nhiên vô nghiệm do vế trái dương
a, ĐK:\(x^2-4x+3\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\3\le x\end{matrix}\right.\)
\(PT\Leftrightarrow x\sqrt{x^2-4x+3}=x\left(x+1\right)\)
Với x = 0 \(\Rightarrow pttm\)
Với \(x\ne0\) \(\Rightarrow\sqrt{x^2-4x+3}=x+1\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x+3=x^2+2x+1\end{matrix}\right.\)\(\Rightarrow x=\frac{1}{3}\left(tm\right)\)
b,ĐK: \(-\sqrt{10}\le x\le\sqrt{10}\)
\(PT\Leftrightarrow\left(x-3\right)\left(x+4\right)-\left(x-3\right)\sqrt{10-x^2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x+4-\sqrt{10-x^2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x+4=\sqrt{10-x^2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x^2+8x+16=10-x^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2+4x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tm)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
\(1+\sqrt{x^2-4x+3}-x=0\)
\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)
\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)
Bài 1:
\(\Leftrightarrow\left(x^2-6x-7\right)^2-\left(3x^2-12x-9\right)^2=0\)
\(\Leftrightarrow\left(3x^2-12x-9-x^2+6x+7\right)\left(3x^2-12x-9+x^2-6x-7\right)=0\)
\(\Leftrightarrow\left(2x^2-6x-2\right)\left(4x^2-18x-16\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(2x^2-9x-8\right)=0\)
hay \(x\in\left\{\dfrac{3+\sqrt{13}}{2};\dfrac{3-\sqrt{13}}{2};\dfrac{9+\sqrt{145}}{4};\dfrac{9-\sqrt{145}}{4}\right\}\)
Điều kiện hơi sót một chút nên pt bị sót nghiệm em ạ.
ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\x^2-9\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x^2\ge9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\x\ge3\end{matrix}\right.\)
Cách làm ổn rồi nhưng em nên nói rõ là: \(\sqrt{A}\ge0\);\(\sqrt{B}\ge0\)
\(\Rightarrow\sqrt{A}+\sqrt{B}\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\sqrt{A}=0\\\sqrt{B}=0\end{matrix}\right.\)
chuyển 1 trong hai cái qua 1 vế để có dạng √A=√B rồi bình phương hai vế lên giải. nhớ đặt ĐK và kết luận nghiệm