Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Để Phương trình trên xác định thì : \(x^3-8\ne0\Rightarrow x^3\ne8\Rightarrow x\ne2\)
Vậy với \(x\ne2\) thì phương trình trên xác định
b) Ta có \(\dfrac{3x^2+6x+12}{x^3-8}=0\Rightarrow3x^2+6x+12=0\)
\(\Rightarrow3\left(x^2+2x+4\right)=0\Rightarrow3\left(x^2+2x+1+3\right)=0\)
\(\Rightarrow3\left[\left(x+1\right)^2+3\right]=0\)
Ta có \(\left(x+1\right)^2\ge0\forall x\) \(\Rightarrow\left(x+1\right)^2+3\ge3\)
\(\Rightarrow3\left[\left(x+1\right)^2+3\right]\ge3>0\)
Vậy phương trình vô nghiệm
x1: nh4hs
x2: na2s
x3: h2s
x4: so2
x5: (nh4)2so3
x6: (nh4)2so4
x7: baso4
x8: nh4no3
x9:h2o
P(x) = ax3 + bx2 + cx + d
P(0) = a . 03 + b . 02 + c . 0 + d = d
=> d = 10
P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + 10
=> a + b + c + 10 = 12
=> a + b + c = 2
P(2) = a . 23 + b . 22 + c . 2 + d = 8a + 4b + 2c + d = 2(4a + 2b + c) + 10
=> 2(4a + 2b + c) + 10 = 4
=> 4a + 2b + c = - 3
mà a + b + c = 2
=> 3a + b = - 5
=> 3a = - b - 5
=> 9a = - 3b - 15
P(3) = a . 33 + b . 32 + c . 3 + d = 27a + 9b + 3c + 10 = 3(9a + 3b + c) + 10
=> 3(9a + 3b + c) + 10 = 1
=> 3(9a + 3b + c) = - 9
=> 9a + 3b + c = - 3
=> - 3b - 15 + 3b + c = - 3
=> c - 15 = - 3
=> c = 12
=> a + b + 12 = 2
=> a + b = - 10
mà 3a + b = - 5
=> 2a = 5
=> a = 2,5
=> 2,5 + b = - 10
=> b = - 12,5
Vậy P(x) = 2,5x3 - 12,5x2 + 12x + 10
AN TRAN DOAN
P(x) = ax3 + bx2 + cx + d
P(0) = a . 03 + b . 02 + c . 0 + d = d
=> d = 10
P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + 10
=> a + b + c + 10 = 12
=> a + b + c = 2
P(2) = a . 23 + b . 22 + c . 2 + d = 8a + 4b + 2c + d = 2(4a + 2b + c) + 10
=> 2(4a + 2b + c) + 10 = 4
=> 4a + 2b + c = - 3
mà a + b + c = 2
=> 3a + b = - 5
=> 3a = - b - 5
=> 9a = - 3b - 15
P(3) = a . 33 + b . 32 + c . 3 + d = 27a + 9b + 3c + 10 = 3(9a + 3b + c) + 10
=> 3(9a + 3b + c) + 10 = 1
=> 3(9a + 3b + c) = - 9
=> 9a + 3b + c = - 3
=> - 3b - 15 + 3b + c = - 3
=> c - 15 = - 3
=> c = 12
=> a + b + 12 = 2
=> a + b = - 10
mà 3a + b = - 5
=> 2a = 5
=> a = 2,5
=> 2,5 + b = - 10
=> b = - 12,5
Vậy P(x) = 2,5x3 - 12,5x2 + 12x + 10
1,Fe3O4+8HCl−−>FeCl2+2FeCl3+4H2O
2, 2Cu(NO3)2−−>2CuO+4NO2+O2
3, 2K+2H2O−−>2KOH+H2
4,2A+2xH2O−−>2A(OH)x+xH2
5, 2C4H10+13O2−−>8CO2+10H2O
6,C2H4O2+2O2−−>2CO2+2H2O
7,2KClO3−−>2KCl+3O2
8,2KNO3−−>2KNO2+O2
\(1.\text{2H2O + O2 + 4Fe(OH)2 → 4Fe(OH)3}\)
\(2.\text{4 FexOy + (3x- 2y) O2 ---> 2x Fe2O3}\)
\(3.\text{Fe2O3 + 3H2 → 2Fe + 3H2O}\)
\(4.\text{CO + CuO → Cu + CO2}\)
\(5.\text{4CO + Fe3O4 ⟶ 3Fe + 4CO2}\)
\(6.\text{yCO + FexOy → xFe + yCO2}\)
1) 4Fe(OH)2+O2+2H2O→4Fe(OH)3
2) FexOy+(3x-2y)O2--->2xFe2O3
3) 3H2+Fe2O3→2Fe +3H2O
4) CO + CuO →Cu+CO2
5) Fe3O4+ 4CO →3Fe+4CO2
6) FexOy + CO →Fe+CO2→Fe+CO2
NTK R gấp 2 lần Si
mà NTK Si là 28
=> NTK = 56 suy ra R là Fe
=>CTHH :Fe2(SO4)3
đây là hóa học 8 à
Dễ thấy, nếu x < 0:
VT=√x2+5+3x<√x2+12<√x2+12+5VT=x2+5+3x<x2+12<x2+12+5.
Phương trình vô nghiệm. Vậy x≥0x≥0.
Phương trình ban đầu tương đương:
(√x2+5−3)−(√x2+12−4)+3x−6=0(x2+5−3)−(x2+12−4)+3x−6=0
⇔x2−4√x2+5+3−x2−4√x2+12+4+3(x−2)=0⇔x2−4x2+5+3−x2−4x2+12+4+3(x−2)=0
⇔(x−2)[x+2√x2+5+3−x+2√x2+12+4+3]=0⇔(x−2)[x+2x2+5+3−x+2x2+12+4+3]=0
⇔⎡⎢⎣x=2x+2√x2+5+3−x+2√x2+12+4+3=0(2)⇔[x=2x+2x2+5+3−x+2x2+12+4+3=0(2)
Ta có:
(2)⇔(x+2)[1√x2+5+3−1√x2+12+4]+3=0(2)⇔(x+2)[1x2+5+3−1x2+12+4]+3=0
⇔(x+2).√x2+12−√x2+5+1(√x2+5+3)(√x2+12+4)=0⇔(x+2).x2+12−x2+5+1(x2+5+3)(x2+12+4)=0
Do x > 0 nên VT > 0 = VF. Do đó phương trình (2) vô nghiệm.
Vậy phương trình ban đầu có nghiệm duy nhất x = 2.