![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3.\)
\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\)
Đặt : \(\sqrt{x+5}=a\Rightarrow x+5=a^2\)
\(\sqrt{x+2}=b\Rightarrow x+2=b^2\)\(\left(đk:a,b\ge0\right)\)
\(\Rightarrow a^2-b^2=x+5-x-2=3\left(1\right)\)
Mà theo phương trình, ta có :
\(\left(a-b\right)\left(1+ab\right)=3\)
\(\Rightarrow a+a^2b-b-ab^2=3\)\(\left(2\right)\)
Tự giải hệ
\(\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)
\(\Leftrightarrow\sqrt{x^2+7x+10}-2-\sqrt{x+5}+2-\sqrt{x+2}+1=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+10}+2}+\frac{x+1}{2+\sqrt{x+5}}+\frac{x+1}{1+\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{x+6}{\sqrt{x^2+7x+10}+2}+\frac{1}{2+\sqrt{x+5}}+\frac{1}{1+\sqrt{x+2}}\right)=0\)
Giải nốt nhá ^.^
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:
\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)
\(\Leftrightarrow-2=-2\) (đúng)
- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)
- Nếu \(0< x< 8\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)
\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)
Vậy nghiệm của pt đã cho là \(x\ge8\)
b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)
Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:
\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)
\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)
\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)
Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện:\(-2\le x\le2\)
Ta có: \(10-3x=\left(2+x\right)+4\left(2-x\right)\)
Đặt \(a=\sqrt{2+x}\ge0\)
\(b=\sqrt{2-x}\ge0\)
Pt trở thành:\(3a-6b+4ab=a^2+4b^2\)
Chuyển vế cùng 1 vế sau đó nhóm lại và đặt nhân tử chung
\(\left(a^2-2ab\right)-\left(2ab-4b^2\right)-\left(3a-6b\right)=0\)
\(a\left(a-2b\right)-2b\left(a-2b\right)-3\left(a-2b\right)=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
- Với a-2b=0
\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}=0\)
\(\Rightarrow x=\frac{6}{5}\left(tm\right)\)
- Với a-2b-3=0
\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}-3=0\)
=> vô nghiệm
Vậy pt trên có nghiệm là \(x=\frac{6}{5}\)
Câu 1:
Ta có 2 vế luôn dương nên bình phương 2 vế được:
\(2x^2+4=5x^3+5\)
\(5x^3-2x^2-1=0\)
<=> x = 0,7528596306
BÌNH PHƯƠNG 2 VẾ HAI LẦN => \( \sqrt{(x+1)(x+10)} =-(x+1)\)
vì x> hoặc= -1 thì PT mới có nghĩa nên nghiệm là -1 khi 2 vế bằng 0
ĐK : x > = - 1
PT <=> \(\left(x+1\right)+\left(x+10\right)+2\sqrt{x+1}.\sqrt{x+10}=\left(x+2\right)+\left(x+5\right)+2\sqrt{x+2}.\sqrt{x+5}\)
<=> \(2+\sqrt{x+1}.\sqrt{x+10}=\sqrt{x+2}.\sqrt{x+5}\)
<=> \(4+4\sqrt{x+1}.\sqrt{x+10}+\left(x+1\right)\left(x+10\right)=\left(x+2\right)\left(x+5\right)\)
<=> \(4+4\sqrt{x+1}.\sqrt{x+10}+4x=0\)
<=> \(\left(\sqrt{x+1}\right)^2+\sqrt{x+1}.\sqrt{x+10}=0\)
<=> \(\sqrt{x+1}.\left(\sqrt{x+1}+\sqrt{x+10}\right)=0\)
<=> x+ 1 = 0 ( vì \(\sqrt{x+1}+\sqrt{x+10}>0\) với mọi x >=-1)
<=> x = - 1 (t/m)
Vậy...