\(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

BÌNH PHƯƠNG 2 VẾ HAI LẦN => \( \sqrt{(x+1)(x+10)} =-(x+1)\)

vì x> hoặc= -1 thì PT mới có nghĩa nên nghiệm là -1 khi 2 vế bằng 0
 


 

13 tháng 9 2015

ĐK : x > = - 1

PT <=> \(\left(x+1\right)+\left(x+10\right)+2\sqrt{x+1}.\sqrt{x+10}=\left(x+2\right)+\left(x+5\right)+2\sqrt{x+2}.\sqrt{x+5}\)

<=> \(2+\sqrt{x+1}.\sqrt{x+10}=\sqrt{x+2}.\sqrt{x+5}\)

<=> \(4+4\sqrt{x+1}.\sqrt{x+10}+\left(x+1\right)\left(x+10\right)=\left(x+2\right)\left(x+5\right)\)

<=> \(4+4\sqrt{x+1}.\sqrt{x+10}+4x=0\)

<=> \(\left(\sqrt{x+1}\right)^2+\sqrt{x+1}.\sqrt{x+10}=0\)

<=> \(\sqrt{x+1}.\left(\sqrt{x+1}+\sqrt{x+10}\right)=0\)

<=> x+ 1 = 0 ( vì \(\sqrt{x+1}+\sqrt{x+10}>0\) với mọi x >=-1)

<=> x = - 1 (t/m)

Vậy...

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

25 tháng 8 2019

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3.\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\)

Đặt : \(\sqrt{x+5}=a\Rightarrow x+5=a^2\)

\(\sqrt{x+2}=b\Rightarrow x+2=b^2\)\(\left(đk:a,b\ge0\right)\)

\(\Rightarrow a^2-b^2=x+5-x-2=3\left(1\right)\)

Mà theo phương trình, ta có :

\(\left(a-b\right)\left(1+ab\right)=3\)

\(\Rightarrow a+a^2b-b-ab^2=3\)\(\left(2\right)\)

Tự giải hệ 

25 tháng 8 2019

\(\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+7x+10}-2-\sqrt{x+5}+2-\sqrt{x+2}+1=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+10}+2}+\frac{x+1}{2+\sqrt{x+5}}+\frac{x+1}{1+\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{x+6}{\sqrt{x^2+7x+10}+2}+\frac{1}{2+\sqrt{x+5}}+\frac{1}{1+\sqrt{x+2}}\right)=0\)

Giải nốt nhá ^.^

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

NV
3 tháng 3 2019

a/ ĐKXĐ: \(x\ge-1\)

\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)

- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:

\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)

\(\Leftrightarrow-2=-2\) (đúng)

- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)

- Nếu \(0< x< 8\) pt trở thành:

\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)

\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)

Vậy nghiệm của pt đã cho là \(x\ge8\)

NV
3 tháng 3 2019

b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)

Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:

\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)

\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)

\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)

\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)

Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)

17 tháng 6 2016

Điều kiện:\(-2\le x\le2\)

Ta có: \(10-3x=\left(2+x\right)+4\left(2-x\right)\)

Đặt \(a=\sqrt{2+x}\ge0\)

\(b=\sqrt{2-x}\ge0\)

Pt trở thành:\(3a-6b+4ab=a^2+4b^2\)

Chuyển vế cùng 1 vế sau đó nhóm lại và đặt nhân tử chung 

\(\left(a^2-2ab\right)-\left(2ab-4b^2\right)-\left(3a-6b\right)=0\)

\(a\left(a-2b\right)-2b\left(a-2b\right)-3\left(a-2b\right)=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

  • Với a-2b=0

\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}=0\)

\(\Rightarrow x=\frac{6}{5}\left(tm\right)\)

  • Với a-2b-3=0

\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}-3=0\)

=> vô nghiệm

Vậy pt trên có nghiệm là \(x=\frac{6}{5}\)

17 tháng 6 2016

Câu 1:

Ta có 2 vế luôn dương nên bình phương 2 vế được:

\(2x^2+4=5x^3+5\)

\(5x^3-2x^2-1=0\)

<=> x = 0,7528596306