Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0
⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)
⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0
b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2
a) \(\left|3x+1\right|=\left|x+1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)
\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)
\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)
\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)
⇒ vô nghiệm
a/ ĐKXĐ: \(x\ge\frac{3}{4}\)
\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)
\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)
b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)
Đặt \(\sqrt{x^2+x+1}=t>0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+1}=1\)
\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
\(\sqrt{\left(x-1\right)\left(x-5\right)}-3\sqrt{1-x}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)\ge0\\1-x\ge0\\\sqrt{\text{}\left(x-1\right)\left(x-5\right)}=3\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-5\ge0\\x-1\le0\end{matrix}\right.\\x\le1\\\sqrt{\text{}\left(x-1\right)\left(x-5\right)}=3\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge5\\x\le1\end{matrix}\right.\\x\le1\\\left(x-1\right)\left(x-5\right)=9\left(1-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-5\right)+9\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x-5+9\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left(x-1\right)\left(x+4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
- Vậy \(S=\left\{1;-4\right\}\)
\(\sqrt{1-x}(\sqrt{5-x}-3)=0\)
x = 1 hay \(\sqrt{5-x}=3 \)
x = 1 hay x= - 4