\(\sqrt{4y^2+x}=\sqrt{4y-x}-\sqrt{x^2+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

30 tháng 5 2018

bình phương 2 vế lên 

\(4*y^2+x+2\sqrt{(4y^2+x)*(x^2+2)}+x^2+2=4*y-x\)

chuyển hết qua vế bên trái rồi rút gọn

\(4y^2+x^2+2x-4y+2+2\sqrt{(4y^2+x)*(x^2+2)}\)=0

phân tích 5 hạng tử đầu 

\((4y^2-4y+1)+(x^2+2x+1)+2\sqrt{(4y^2+x)*(x^2+2)}\)=0

<=>\((2y-1)^2+(x+1)^2+2\sqrt{(4y^2+x)*(x^2+2)}\)=0

Vì mỗi hạng tử ở bên vế trái đều lớn hơn hoặc bằng 0 

=>\(2y-1=0=>y=1/2\) và \(x+1=0=>x=-1\)

Thay x và y vừa tìm được vào hạng tử còn lại là \(\sqrt{(4y^2+x)*(x^2+2)}\) =0 thì thõa mãn 

Vậy (x;y)=(-1;1/2)

14 tháng 9 2020

câu này dễ

trả lời : ko bt :)

14 tháng 9 2020

????? nha ban

13 tháng 7 2017

\(Áp-dụng-BĐT-\left(a+b\right)\le\sqrt{2\left(a^2+b^2\right)}=>VT=x+\sqrt{2-x^2}\le2\\ VP=4y^2+4y+1\ge2\\ =>1\ge VT=VP\ge1\\ =>2y+1=0vax=\sqrt{2-x^2}.\)

15 tháng 8 2017

cách giải hay nè:  =  
 =  
 =  
Đặt  = 
=>  = 
=> = .ta có hệ:
 
Đến Đây thì đơn giản rồi.chứ nân ra thì muốn ói

15 tháng 8 2017

phần sau cậu làm giống cô là đc 

7 tháng 1 2019

\(< =>\\ \sqrt{4y^2+x}+\sqrt{x^2+2}=\sqrt{4y^2-x}\)

\(\sqrt{4y^2+x}+\sqrt{x^2+2}\ge\sqrt{4y^2+x^2+x+2}\)

=>

\(\sqrt{4y^2+x^2+x+2}\le\sqrt{4y^2-x}\)

=> \(4y^2+x^2+x+2\le4y^2-x\)

<=>\(x^2+2x+2\le0\\ \Leftrightarrow\left(x+1\right)^2+1\le0\) (vn)

7 tháng 1 2019

Unruly Kid Nguyễn Thị Ngọc Thơ Luân Đào DƯƠNG PHAN KHÁNH DƯƠNG ngonhuminh Hùng Nguyễn