
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)

a/ ĐKXĐ: ....
\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)
\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)
\(\Leftrightarrow2a^2+2b^2=5ab\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: ....
\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)
\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)
\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)

\(b.\sqrt[3]{x-17}+\sqrt{x+8}=5\) \(\left(ĐK:x\ge-8\right)\)
Đặt: \(a=\sqrt[3]{x-17},b=\sqrt{x+8}\)
\(\Rightarrow x-17=a^3,x+8=b^2\)
Khi đó:
\(\left\{{}\begin{matrix}a+b=5\\a^3-b^2=x-17-x-8=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\a^3-b^2=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)^3-b^2=-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-14b^2+75b-150=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-5b^2-9b^2+45b+30b-150=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2\left(b-5\right)-9b\left(b-5\right)+30\left(b-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-5\right)\left(b^2-9b+30\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left[{}\begin{matrix}b=5\\b^2-9b+30=\left(b-\dfrac{9}{2}\right)^2+\dfrac{39}{4}=0\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
Thế vào ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[3]{x-17}=0\\\sqrt{x+8}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-17=0\\x+8=25\end{matrix}\right.\) \(\Leftrightarrow x=17\left(n\right)\)

Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
\(\sqrt{4x^2-2x+\frac{1}{4}}=4x^3+8x-x^2-2\)
\(\Leftrightarrow-\frac{1}{2}|4x-1|=\left(4x-1\right)\left(x^2+2\right)\)
Do VT \(\ge0\)và x2 + 2 > 0 với mọi x nên \(4x-1\ge0\). Khi đó :
\(\Leftrightarrow\frac{1}{2}.\left(4x-1\right)=\left(4x-1\right)\left(x^2+2\right)\)
\(\Leftrightarrow\left(4x-1\right).\left(x^2+\frac{3}{2}\right)=0\)
\(\Leftrightarrow4x-1=0\)( vì \(x^2+\frac{3}{2}>0\forall x\))
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy ; \(x=\frac{1}{4}\)là nghiệm duy nhất của PT
\(ĐKXĐ:x\inℝ\)
\(\sqrt{4x^2-2x+\frac{1}{4}}=4x^3+8x-x^2-2\)
\(\Leftrightarrow\sqrt{\frac{1}{4}.\left(16x^2-8x+1\right)}=4x\left(x^2+2\right)-\left(x^2+2\right)\)
\(\Leftrightarrow\sqrt{\frac{1}{4}.\left(4x-1\right)^2}=\left(4x-1\right)\left(x^2+2\right)\)
\(\Leftrightarrow\frac{1}{2}.\left|4x-1\right|=\left(4x-1\right)\left(x^2+2\right)\)(1)
Vì \(\left|4x-1\right|\ge0\forall x\)\(\Rightarrow\frac{1}{2}.\left|4x-1\right|\ge0\forall x\)
\(\Rightarrow\)Để phương trình (1) có nghiệm thì \(\left(4x-1\right)\left(x^2+2\right)\ge0\)
Vì \(x^2+2>0\)\(\Rightarrow4x-1\ge0\)\(\Leftrightarrow4x\ge1\)\(\Leftrightarrow x\ge\frac{1}{4}\)
\(\Rightarrow\left|4x-1\right|=4x-1\)
Từ (1) \(\Rightarrow\frac{1}{2}.\left(4x-1\right)=\left(4x-1\right)\left(x^2+2\right)\)
\(\Leftrightarrow\left(4x-1\right)\left(x^2+2\right)-\frac{1}{2}\left(4x-1\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x^2+\frac{3}{2}\right)=0\)
Vì \(x^2+\frac{3}{2}>0\forall x\)\(\Rightarrow4x-1=0\)\(\Leftrightarrow4x=1\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn )
Vậy phương trình có nghiệm duy nhất : \(x=\frac{1}{4}\)