\(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}=5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

câu hỏi tương tự có đấy bạn ạ !

17 tháng 10 2015

có câu hỏi tương tự dấy

4 tháng 8 2018

a) Đk: x \(\ge\) 5

\(\sqrt{x-5}-\frac{x-14}{3x+\sqrt{x-5}}=3\)

\(\sqrt{x-5}\left(3+\sqrt{x-5}\right)-\frac{x-14}{3\sqrt{x-3}}\left(3+\sqrt{x-5}\right)=3\left(3+\sqrt{x-5}\right)\)

\(\sqrt{x-5}\left(3+\sqrt{x-5}\right)-\left(x-14\right)=3\left(3+\sqrt{x-5}\right)\)

\(3\sqrt{x-5}+9-\left(3\sqrt{x-5}+9\right)=9+3\sqrt{x-5}-\left(3\sqrt{x-5}+9\right)\)

=> Luôn đúng với x \(\ge\) 5

chúc bạn học tốt 

13 tháng 9 2018

Ai còn onl ko kb vs mk bùn quá!!!

18 tháng 12 2015

b/ \(\Rightarrow2x+3+2\sqrt{2x+3}-x^2-6x-8=0\)

Đặt \(a=\sqrt{2x+3}\left(a\ge0\right)\)

\(\left(1\right)\Rightarrow a^2+2a-x^2-6x-8=0\)

Có: \(\Delta=1+x^2+6x+8=x^2+6x+9=\left(x+3\right)^2\)

\(\Rightarrow\sqrt{\Delta}=x+3\)

\(\Rightarrow a=\frac{-1+x+3}{1}=x+2\)

hoặc \(a=\frac{-1-x-3}{1}=-x-4\)

+) Với a = x + 2 \(\Leftrightarrow\sqrt{2x+3}=x+2\left(x\ge-2\right)\) 

......... tự giải ra x

+) Với a = -x - 4  \(\Leftrightarrow\sqrt{2x+3}=-x-4\left(x\le-4\right)\)

.........tự giải ra x

4 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

26 tháng 8 2015

Ta có  \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\to\sqrt{3x^2-12x+16}\ge\sqrt{4}=2.\)

Tương tự \(y^2-4y+13=\left(y-2\right)^2+9\ge9\to\sqrt{y^2-4y+13}\ge3\)

Vậy vế ta có \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5.\) Để dấu bằng xảy ra thì \(x=y=2.\)

Đáp số \(x=y=2.\)

22 tháng 7 2019

a) ĐK: x2 - 7x + 8 ≥ 0

Đặt √(x2 - 7x + 8) = a (1)

⇔ a2 + a - 20 = 0

⇔ a = 4 hoặc a = -5

Thay vào (1) là tìm được x, kết hợp với ĐK là xong.

22 tháng 7 2019

b) Dễ chứng minh Vế Trái lớn hơn hoặc bằng 0.

Dấu "=" xảy ra khi x = -4; y=​ 4. ....... là nghiệm của pt

12 tháng 10 2017

a) Đặt \(\left(x^2-7x;\sqrt{x^2-7x+8}\right)=\left(a;b\right)\left(b\ge0\right)\)

Phương trình đã cho tương đương với hệ

\(\left\{{}\begin{matrix}a+b=12\\b^2-a=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=12\\b^2+b=20\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=20\\\left[{}\begin{matrix}b=4\\b=-5\end{matrix}\right.\end{matrix}\right.\)(Loại no -5)

\(\left\{{}\begin{matrix}a=16\\b=4\end{matrix}\right.\)

Thay a;b vào chỗ đặt ban đầu, giải phương trình bậc 2 tìm nghiệm

12 tháng 10 2017

c) Đặt \(\left(\sqrt{x-3};\sqrt{5-x}\right)=\left(a;b\right)\)

\(\left\{{}\begin{matrix}a+b=-\left(ab+3\right)\\a^2+b^2=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a+b=-3-ab\\\left(a+b\right)^2-2ab=2\end{matrix}\right.\)

Lại đặt \(\left(a+b;ab\right)=\left(z;t\right)\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2t=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}z=-3-t\\z^2-2\left(-3-z\right)=2\end{matrix}\right.\)

Tiếp tục giải ;v