\(\sqrt[3]{x-2}-\sqrt[3]{2x-2}=-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

bn nhân vao \(\left(\sqrt[3]{x-2}\right)^2+\sqrt[3]{\left(x-2\right)\left(2x-2\right)}+\left(\sqrt[3]{2x-2}\right)^2\)

2 tháng 12 2017

cảm ơn bạn

8 tháng 9 2017

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

23 tháng 7 2016

Nhân cả hai vế của phương trình với 2 ta có:
\(4x+2\sqrt{x}.\sqrt{3x+2}=6\left(\sqrt{x}+\sqrt{3x+2}\right)+4\sqrt{2}-2\)
\(\Leftrightarrow\left(x+2\sqrt{x}.\sqrt{3x+2}+3x+2\right)-2=6\left(\sqrt{x}+\sqrt{3x+2}\right)+4\sqrt{2}-2\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{3x+2}\right)^2=6\left(\sqrt{x}+\sqrt{3x+2}\right)+4\sqrt{2}\)
Đặt \(t=\sqrt{x}+\sqrt{3x+2},x\ge0\Rightarrow\sqrt{x}+\sqrt{3x+2}\ge\sqrt{2}\)
phương trình trở thành: \(t^2-6t-4\sqrt{2}=0\Leftrightarrow\orbr{\begin{cases}t=4+2\sqrt{2}\left(tm\right)\\t=2-2\sqrt{2}\left(l\right)\end{cases}}\)
Với \(t=4+2\sqrt{2}\Rightarrow\sqrt{x}+\sqrt{3x+2}=4+2\sqrt{2}\)
 Đặt:\(a=\sqrt{x},b=\sqrt{3x+2},q=4+2\sqrt{2}\)ta có hệ sau:
\(\hept{\begin{cases}a+b=q\\3a^2-b^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}b=q-a\\3a^2-\left(q-a\right)^2=-2\end{cases}}\Leftrightarrow2a^2+2qa-\left(q^2-2\right)=0\)
suy ra: \(a=\frac{-q+\sqrt{3q^2-4}}{2}\Leftrightarrow\sqrt{x}=\frac{-q+\sqrt{3q^2-4}}{2}\)
vậy \(x=\left(\frac{-q+\sqrt{3q^2-4}}{2}\right)^2\)với \(q=4+2\sqrt{2}\)

NV
27 tháng 6 2019

Bạn coi lại đề câu a và câu c

b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)

Phương trình trở thhành:

\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)

\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)

\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))

\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)

\(\Leftrightarrow x^2=16\Rightarrow x=4\)

27 tháng 6 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking

Giúp mk vs!khocroi

9 tháng 9 2017

\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3

<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3

<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3

<=> x - 1 + x - 2 = 3

<=> 2x - 3 = 3

<=> x = \(\dfrac{6}{2}\)= 3

b ,

\(\sqrt{x^2-10x+25}=3-19x\)

<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)

<=> \(\left|x-5\right|=3-19x\)

<=> \(x-5=3-19x\)

\(\Leftrightarrow x+19x=3+5\)

\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

20 tháng 10 2018

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v 

24 tháng 7 2018

\(a.\sqrt[3]{2x-1}=3\)

\(\Leftrightarrow2x-1=27\)

\(\Leftrightarrow x=14\)

\(b.\sqrt[3]{x-5}=0,9\)

\(\Leftrightarrow x-5=0,729\)

\(\Leftrightarrow x=5,729\)

\(c.\sqrt[3]{x^2-2x+28}=3\)

\(\Leftrightarrow x^2-2x+28=27\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

24 tháng 7 2018

d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)

\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)

Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)

\(\Rightarrow8x^2-27x-18.x.5=125\)

\(\Leftrightarrow8x^2-117x-125=0\)

\(\Leftrightarrow8x^2+8x-125x-125=0\)

\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)