Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))
<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1
<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)
TH1: \(0\le\sqrt{x+2}< 2\)
Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)
<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))
TH2 : \(2\le\sqrt{x+2}\le3\)
Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
<=> \(1=1\) (luôn đúng)
Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)
TH3 \(\sqrt{x+2}>3\)
Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)
<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))
Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)
b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))
Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)
Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)
<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)
Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
<=> \(x^2-10x+27\ge2\) (2)
Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)
c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))
<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)
d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)
<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)
<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)
<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)
=>x=\(2\sqrt{2}\)
\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\left(đk:x\ge-\frac{1}{2}\right)\) (*)
Đặt \(2\sqrt{x+1}=a\left(a\ge0\right)\) , \(\sqrt{2x+1}=b\left(b\ge0\right)\)
Có \(a^2-b^2=4\left(x+1\right)-2x-1=4x+4-2x-1=2x+3\)
Có \(2x+3=a+b\)
=> \(a^2-b^2=a+b\)( do \(a^2-b^2=2x+3\))
<=> \(\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a-b-1\right)=0\)
=> \(\left[{}\begin{matrix}a=-b\\a=b+1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2\sqrt{x+1}=-\sqrt{2x+1}\\2\sqrt{x+1}=\sqrt{2x+1}+1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}4\left(x+1\right)=2x+1\\4\left(x+1\right)=2x+1+2\sqrt{2x+1}+1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x+4-2x-1=0\\4x+4-2x-1-1=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x+3=0\\2x+2=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-\frac{3}{2}\left(ktm\right)\\x+1=\sqrt{2x+1}\end{matrix}\right.\)
=> \(x+1=\sqrt{2x+1}\)
<=> x2+2x+1=2x+1
<=> x2=0
<=>x=0(t/m pt (*))
Vậy pt (*) có tập nghiệm \(S=\left\{0\right\}\)
b, \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\) (*) (đk: \(\frac{1}{4}\le x\le\frac{3}{8}\))
<=>\(2-6x=\sqrt{4x-1}-\sqrt{3-8x}\)
Đặt \(\sqrt{3-8x}=a\left(a\ge0\right)\) , \(\sqrt{4x-1}=b\left(b\ge0\right)\)
Có \(\left\{{}\begin{matrix}a^2-b^2=3-8x-4x+1\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=4-12x\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=2\left(2-6x\right)\\2-6x=b-a\end{matrix}\right.\)
=> \(\left(a+b\right)\left(a-b\right)=2\left(b-a\right)\)
<=> \(\left(a+b\right)\left(a-b\right)-2\left(b-a\right)=0\)
<=> \(\left(a-b\right)\left(a+b+2\right)=0\)
=> a-b=0(do a+b+2 >0 với \(a;b\ge0\))
<=> a=b <=> \(\sqrt{3-8x}=\sqrt{4x-1}\)<=> \(3-8x=4x-1\)
<=> \(3+1=4x+8x\)<=> \(4=12x\)
<=> \(x=\frac{1}{3}\)
Vậy pt (*) có tập nghiệm \(S=\left\{\frac{1}{3}\right\}\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(pt\Leftrightarrow\sqrt{2x^2+8x+6}-4+\sqrt{x^2-1}-2x+2=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+5\right)}{\sqrt{2x^2+8x+6}+4}+\sqrt{x^2-1}-2\left(x-1\right)=0\)
Giải nốt nhá
\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x-3\right)}+\sqrt{x^2-1}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{x^2-1^2}=2x+2\)
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x+1\right)\left(x-1\right)}=2x+2\)
\(\Leftrightarrow2x^2+8x+6+\left(2x+2\right)\sqrt{2\left(x+3\right)\left(x-1\right)}+\left(x+1\right)\left(x-1\right)=4\left(x+1\right)^2\)
\(\Leftrightarrow\left(2x+2\right)\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)^2-2x^2-8x-6-\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow8\left(x+1\right)^3.\left(x+3\right)\left(x-1\right)=\left(x+1\right)^2.\left(x-1\right)^2\)
\(\Leftrightarrow8x^4-8x^3+24x^3-24x^2+16x^3-16x^2+48x^2-48x+8x^2-8x+24x-24\)\(=x^4-2x^3+x^2+2x^3-4x^2+2x+x-2x+1\)
\(\Leftrightarrow8x^4+32x^3+16x^3-32x=x^4-2x^3+x^2+2x^3-4x^2+2x+x^2-2x+1\)
\(\Leftrightarrow8x^4+32x^3+16x^2-32x-24=x^4-2x^2+1\)
\(\Leftrightarrow8x^4+32x^2+16x^2-32x-24-x^4+2x^2-1=0\)
\(\Leftrightarrow7x^4+32x^3+18x^2-32x-25=0\)
\(\Leftrightarrow\left(7x^3+39x^2+57x+25\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(7x^2+25x+7x+25\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(7x+25\right)+\left(7x+25\right)\right]\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(7x+25\right)\left(x+1\right)\left(x-1\right)=0\)
Nhưng \(7x+25\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy: nghiệm phương trình là x = 1; x = -1