Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)
Phương trình trở thành: \(x^3+1=2a\left(2\right)\)
Trừ theo vế (1) và (2):
a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x
\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)
b)ĐKXĐ:\(x\in R\)
pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)
Xét x=0 ko là nghiệm của pt(loại)
x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)
Khi đó ta sẽ tìm được các nghiệm của pt
1) x-\(\sqrt{2x-5}\)=4
ĐK: \(\left\{{}\begin{matrix}2x-5\ge0\\x\ge4\end{matrix}\right.\)=> x\(\ge\)4
x-\(\sqrt{2x-5}\)=4<=> x-4=\(\sqrt{2x-5}\)
bình phương hai vế:
\(x^2-8x+16\) =2x-5
<=>\(x^2\) -10x+21=0 <=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
2) \(2x^2-3-5\sqrt{2x^2+3}=0\)(*)
ĐK:\(2x^2-3>0\Leftrightarrow x^2>\dfrac{3}{2}\)
<=>\(\left[{}\begin{matrix}x>\sqrt{\dfrac{3}{2}}\\x< -\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)
(*)<=>
Mình giải câu BPT, câu pt là 1 phần nhỏ của nó, bạn tự giải:
- Với \(x=0\Rightarrow\frac{1}{16}\ge0\) (thỏa mãn) là 1 nghiệm của BPT
- Với \(x\ne0\Rightarrow x^2>0\) BPT tương đương:
\(\frac{\left(x^2+3x+\frac{1}{4}\right)\left(x^2-x+\frac{1}{4}\right)}{x^2}\ge12\)
\(\Leftrightarrow\left(x+\frac{1}{4x}+3\right)\left(x+\frac{1}{4x}-1\right)\ge12\)
Đặt \(x+\frac{1}{4x}-1=t\)
\(\Leftrightarrow\left(t+4\right)t\ge12\Leftrightarrow t^2+4t-12\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)
TH1: \(t\ge2\Leftrightarrow x+\frac{1}{4x}-3\ge0\Leftrightarrow\frac{4x^2-12x+1}{4x}\ge0\) \(\Rightarrow\left[{}\begin{matrix}0< x\le\frac{3-2\sqrt{2}}{2}\\x\ge\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
TH2: \(t\le-6\Leftrightarrow x+\frac{1}{4x}+5\le0\Leftrightarrow\frac{4x^2+20x+1}{4x}\le0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-5-2\sqrt{6}}{2}\\\frac{-5+2\sqrt{6}}{2}\le x< 0\end{matrix}\right.\)
Kết hợp lại ta được nghiệm của BPT: \(\left[{}\begin{matrix}x\le\frac{-5-2\sqrt{6}}{2}\\\frac{-5+2\sqrt{6}}{2}\le x\le\frac{3-2\sqrt{2}}{2}\\x\ge\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)
ĐKXĐ: ...
\(x^2+\sqrt{4x^2-12x+44}=3x+4\)
\(\Leftrightarrow\sqrt{4x^2-12x+44}=3x+4-x^2\)
\(\Leftrightarrow4x^2-12x+44=\left(3x+4-x^2\right)^2\)
\(\Leftrightarrow4x^2-12x+44=x^4-6x^3+x^2+24x+16\)
\(\Leftrightarrow x^4-6x^3-3x^2+36x-28=0\)
...........
\(đk:4x^2-12x+44\ge0\left(luôn-đúng\right)\)
\(x^2+\sqrt{4x^2-12x+44}=3x+4\)
\(\Leftrightarrow x^2-3x-4+2\sqrt{x^2-3x+11}=0\)
\(\Leftrightarrow x^2-3x+11+2\sqrt{x^2-3x+11}-15=0\)
\(đặt:\sqrt{x^2-3x+11}=t\left(t\ge0\right)\)
\(\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=3\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-3x+11}=3\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)