![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{x-1}+\frac{4}{x+1}=\frac{3x+2}{1-x^2}\Leftrightarrow\frac{3}{x-1}+\frac{4}{x+1}=-\frac{3x+2}{x^2-1}\Leftrightarrow\frac{3}{x-1}+\frac{4}{x+1}=-\frac{3x+2}{\left(x-1\right)\left(x+1\right)}\)\(\Leftrightarrow3.\left(x+1\right)+4.\left(x-1\right)=-\left(3x+2\right)\)
=> 3x + 3 + 4x - 4 + 3x + 2 = 0
=> 10x + 1 = 0
=> x = -1/10
![](https://rs.olm.vn/images/avt/0.png?1311)
cách làm :
đặt điều kiện xác định
quy đồng rồi khử mẫu (x-2)(3x-2)
phân tích các số trong ngoặc ra rồi giải phương trình
( phương trình là phương trình bậc 2 nên ko khó giải lắm )
Chúc bạn học giỏi
Tích mk nhoa !!!! ~~
mk ghi nhầm đó bạn
chỗ kia là khử mẫu (x-2)(x+2) chứ ko phải là (x-2)(3x-2) đâu
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(x^4-2x^3+3x^2-2x+1=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)
\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)
\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0
\(\Leftrightarrow\) x - 1 = 0 và x = 0
\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)
Vậy phương trình vô nghiệm.
2. \(\left(x^2-4\right)^2=8x+1\)
\(\Leftrightarrow x^4-8x^2+16=8x+1\)
\(\Leftrightarrow x^4-8x^2-8x+15=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) x - 3 = 0 \(\Leftrightarrow\) x = 3
3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)
Vậy tập nghiệm của pt là S = {1;3}.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-3x+2+|x-1|=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+|x-1|=0\left(1\right)\)
-TH1: x-1 \(\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
\(-TH_2:x-1< 0\)
\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=1\)
\(x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
kết quà phân tích thành nhân tử :
\(\left(x+1\right)^2\left(x^2+x+1\right)=0\) ( coccoc math )
TH1 : \(x=-1\)
TH2:\(x^2+x+1=0\Leftrightarrow\left(x^2+\frac{2x.1}{2}+\frac{1}{4}\right)+1-\frac{1}{4}=0\)
\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( vô nghiệm
vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) |2x-1|=x+3
Nếu x\(\ge\)\(\dfrac{1}{2}\) thì: 2x-1=x+3
\(\Leftrightarrow\)x=4 (t/m)
Nếu x<\(\dfrac{1}{2}\) thì: 2x-1=-x-3
\(\Leftrightarrow\)x=\(\dfrac{-2}{3}\) (t/m)
b) |x+2|=|3x-1|
\(\Leftrightarrow\) (x+2)2=(3x-1)2\(\Leftrightarrow\)x2+4x+4=9x2-6x+1
\(\Leftrightarrow\)-8x2+10x+3=0\(\Leftrightarrow\)-8x2-2x+12x+3=0
\(\Leftrightarrow\)(4x+1)(-2x+3)=0\(\Leftrightarrow\)x\(\in\){\(\dfrac{-1}{4}\);\(\dfrac{3}{2}\)}
c)|x+1|+|x-2|=4
Lập bảng:
x | -1 2
x+1| -x-1 0 x+1 | x+1
x-2 | -x+2 | -x+2 0 x-2
VT | -2x+1 | 3 | 2x-1
Nếu x<-1 thì -2x+1=4\(\Leftrightarrow\)x=\(\dfrac{-3}{2}\) (t/m)
Nếu -1\(\le\)x<2 thì không có giá trị nào của x
Nếu 2\(\le\)x thì 2x-1=4\(\Leftrightarrow\)x=\(\dfrac{5}{2}\) (t/m)
Vậy x\(\in\){\(\dfrac{-3}{2};\dfrac{5}{2}\)}