\(2,3x-2.\left(0.7+2x\right)=36-4,7x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

\(\Leftrightarrow2,3x-1,4-4x=36-4,7x\Leftrightarrow3x=37,4\Leftrightarrow x=\dfrac{37,4}{3}\)

25 tháng 1 2022

\(2,3x-2\left(0,7+2x\right)=36-4,7x\\ \Leftrightarrow2,3x-1,4-4x-36+4,7x=0\)

\(\Leftrightarrow3x-37,4=0\\ \Leftrightarrow x=\dfrac{187}{15}\)

20 tháng 7 2017

a)\(1,2-x+0,8=-1,8-2x\)

\(2-x=-1,8-2x\)

\(2x-x=-1,8-2\)

\(x=-3,8\)

Vậy S={-3,8}

b)\(2,3x-1,4-4x=3,6-1,7x\)

\(2,3x-4x+1,7x=3,6+1,4\)

0=5(vô lí)

Vậy S={\(\varnothing\)}

c)\(6,6-0.9=2,6+0,1x-4\)

\(5,7=0,1x-1,4\)

\(-4,3=0,1x\)

\(x=-43\)

Hình như câu c bạn làm sai rồi thì phải.

9 tháng 2 2017

Làm cho bạn 1 con thôi dài quá trôi hết màn hình:

c) có vẻ khó nhất (con khác tương tự)

đặt 2x+2=t=> x+1=t/2

\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)

\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)

<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)

19 tháng 3 2019
https://i.imgur.com/M7sPNgY.jpg
19 tháng 3 2019
https://i.imgur.com/KdjbxBN.jpg

@Huy Tú: Mik lạy bạn thật sự, nếu mẫu giống nhau với được khử mẫu, chứ nếu bạn không để cả hai vế có mẫu giống nhau thì không khử được mẫu đâu bạn ak.

\(\frac{2\left(1-3x\right)}{5}-\frac{2x+3}{10}=7-\frac{3\left(2x+1\right)}{4}\)

\(\Leftrightarrow\frac{2-6x}{5}-\frac{2x+3}{10}=7-\frac{6x+3}{4}\)

\(\Leftrightarrow\frac{4\left(2-6x\right)}{20}-\frac{2\left(2x+3\right)}{20}=\frac{140}{20}-\frac{5\left(6x+3\right)}{20}\)

\(\Rightarrow8-24x-4x-6=140-30x-15\)

\(\Leftrightarrow-24x-4x+30x=140-15-8+6\)

\(\Leftrightarrow2x=123\)

\(\Leftrightarrow x=\frac{123}{2}\)

Vậy \(x=\frac{123}{2}\) là nghiệm phương trình. 

19 tháng 5 2020

\(\frac{2\left(1-3x\right)}{5}-\frac{2x+3}{10}=7-\frac{3\left(2x+1\right)}{4}\)

\(< =>\frac{2-6x}{5}-\frac{2x+3}{10}=\frac{28-\left(6x+3\right)}{4}\)

\(< =>\frac{16-48x}{40}-\frac{8x+12}{40}=\frac{280-60x-30}{40}\)

\(< =>16-48x-8x-12=280-30-60x\)

\(< =>4-56x=250-60x\)

\(< =>4+4x=250\)\(< =>x=\frac{250-4}{4}=\frac{123}{2}\)

7 tháng 2 2020

\(a,\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=2\\4x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)

Vậy ............

\(b,\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2,3x=6,9\\0,1x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}\)

Vậy ...........

\(c,\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-0,5\\x\in\varnothing\end{cases}}\)

Vậy .........................

\(d,\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+7=0\\x-5=0\\5x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-7\\x=5\\5x=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{7}{2}\\x=5\\x=-\frac{1}{5}\end{cases}}\)

Vậy ...............

7 tháng 2 2020

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}}\)

\(\Leftrightarrow x=-\frac{1}{2}\) ( do \(x^2+1\ge1>0\forall x\) )

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+7=0\\x-5=0\end{cases}hoặc5x+1=0}\)

\(\Leftrightarrow x\in\left\{-\frac{7}{2},5,-\frac{1}{5}\right\}\)

25 tháng 2 2020

giup minh voi cac bạn

11 tháng 8 2020

a) \(\left(x^2+2x+2\right)\left(x^2+2x+3\right)=0\)

<=> \(\orbr{\begin{cases}x^2+2x+2=0\\x^2+2x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+1\right)^2+1=0\left(vl\right)\\\left(x+1\right)^2+2=0\left(vl\right)\end{cases}}\)

=> pt vô nghiệm

b) \(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)

<=> \(\left(x^2-9\right)\left(x^2-11\right)+1=0\)

<=> \(\left(x^2-9\right)^2-2\left(x^2-9\right)+1=0\)

<=> \(\left(x^2-9-1\right)^2=0\)

<=> \(x^2-10=0\)

<=> \(x=\pm\sqrt{10}\)

11 tháng 8 2020

c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> \(\left(x+4-1\right)^4+\left(x+4+1\right)^4=2\)

Đặt x + 4 = a

<=> \(\left(a-1\right)^4+\left(a+1\right)^4=2\)

<=> \(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)

<=> \(a^4+12a^2=0\)

<=> \(a^2\left(a^2+12\right)=0\)

<=> a = 0 (vì a2 + 12 > 0)

Vậy S = {0}