![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
giải các pt bậc 2 sau đây :
\(x^2-4x+8=0\)
\(2x^2+6x-4=0\)
\(8x^2-4x+2=0\)
\(5\left(x+3\right)^2+x+4=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk ra cho các bn làm nên mk lm mẫu 1 bài y hệt ntn cho các bn tham khảo trc nhé xD
\(4x^2-7x+3=0\)
Ta có : \(\Delta=b^2-4ac=\left(-7\right)^2-4.4.3=49-48=1\)
Do \(\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+1}{8}=1\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-1}{8}=\frac{6}{8}=\frac{3}{4}\)
Vậy ...
\(2x^2+6x-4=0\)
Ta có : \(\Delta=b^2-4ac=6^2-4.2.4=36-32=4\)
Do \(A>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+4}{4}=-\frac{1}{2}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-4}{4}=-\frac{5}{2}\)
số ko đẹp lắm :P đúng ko cj
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
![](https://rs.olm.vn/images/avt/0.png?1311)
câu trả lời của thu hương rất hay!
Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không
hiihhi
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow\) \(\sqrt{\left(x+2\right)^2}\) + \(\left|x-4\right|=0\) ( ĐKXĐ : \(\left(x+2\right)^2\ge0\) luôn đúng \(\forall x\) )
\(\Leftrightarrow\) x + 2 + \(\left|x-4\right|\) = 0 (*)
TH1 : x \(\ge4\) \(\Leftrightarrow\) \(\left|x-4\right|=x-4\) TH2 : x < 4 \(\Leftrightarrow\) \(\left|x-4\right|=-x+4\)
\(\Rightarrow\) (*) = x + 2 + x - 4 = 0 \(\Rightarrow\) (*) = x + 2 - x + 4 = 0
\(\Leftrightarrow\) 2x - 2 = 0 \(\Leftrightarrow\) 6 = 0 ( vô lí )
\(\Leftrightarrow\) x = 1 (KTM) (1) \(\Leftrightarrow\) \(x\in\varnothing\) (2)
Từ (1) và (2) \(\Rightarrow\) \(x\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)
ĐK: \(x\ge-\frac{1}{3}\)
\(\Leftrightarrow5x^2+4x-9-\left(4x\sqrt{x^2+x+2}-8\right)-\left(4\sqrt{3x+1}-8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{x^2\left(x^2+x+2\right)-4}{x\sqrt{x^2+x+2}+2}-4\frac{3x+1-4}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+9\right)-4\frac{\left(x-1\right)\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+9-4\frac{\left(x^3+2x^2+4x+4\right)}{x\sqrt{x^2+x+2}+2}-4\frac{3}{\sqrt{3x+1}+2}\right)=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(ĐKXĐ:x\ge\frac{-1}{3}\)
\(5x^2+4x+7-4x\sqrt{x^2+x+2}-4\sqrt{3x+1}=0\)
\(\Leftrightarrow\left(x^2+x+2-4x\sqrt{x^2+x+2}+4x\right)\)\(+\left(3x+1-4\sqrt{3x+1}+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+x+2}-2x\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=2x\\\sqrt{3x+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x^2+x+2=4x\\3x+1=4\end{cases}}\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là x = 1
𝑥=9
𝑥=−9