\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\frac{x+3}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

ĐK: \(0\le x\le1\)

Đặt \(t=\sqrt{x}+\sqrt{1-x}\) ( \(t>0\) )

\(\Leftrightarrow t^2=x+1-x+2\sqrt{x\left(1-x\right)}\)

\(\Leftrightarrow t^2-1=2\sqrt{x-x^2}\)

\(\Leftrightarrow\frac{t^2-1}{2}=\sqrt{x-x^2}\)

Ta có \(pt\Leftrightarrow1+\frac{2}{3}\cdot\frac{t^2-1}{2}=t\)

\(\Leftrightarrow1+\frac{t^2-1}{3}-t=0\)

\(\Leftrightarrow t^2-1-3t+3=0\)

\(\Leftrightarrow t^2-3t+2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

TH1: \(\sqrt{x}+\sqrt{1-x}=1\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)( thỏa (

TH2: \(\sqrt{x}+\sqrt{1-x}=2\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=4\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=\frac{3}{2}\)

\(\Leftrightarrow x\left(1-x\right)=\frac{9}{4}\)

\(\Leftrightarrow4x\left(1-x\right)=9\)

\(\Leftrightarrow4x^2-4x+9=0\)

\(\Leftrightarrow\left(2x+1\right)^2+8=0\)( vô lý )

Vậy \(x\in\left\{0;1\right\}\)

22 tháng 7 2019

b, Đặt \(\sqrt[3]{x}=t\)

Ta có: \(\sqrt[3]{x^2}-8\sqrt[3]{x}=20\)

\(\Leftrightarrow t^2-8t=20\Leftrightarrow t^2-8t-20=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-10\right)=0\)

\(\orbr{\begin{cases}t=-2\\t=10\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt[3]{x}=-2\\\sqrt[3]{x}=10\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-8\\x=1000\end{cases}}\)

20 tháng 8 2017

câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi