Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}-\left(x+\frac{1}{2}\right)=\frac{4}{5}\)
\(\Rightarrow x+\frac{1}{2}=\frac{3}{4}-\frac{4}{5}\)
\(\Rightarrow x+\frac{1}{2}=-\frac{1}{20}\)
\(\Rightarrow x=-\frac{1}{20}-\frac{1}{2}\)
\(\Rightarrow x=\frac{-11}{20}\)
a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)
b/
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)
\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)
\(\Leftrightarrow\left|x+2\right|-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
c/
\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)
\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)
Đặt \(\frac{\left|x-2\right|}{x-1}=a\)
\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)
e/ ĐKXĐ: ...
Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)
\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)
a/
\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)
b/
\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)
c/
\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)
\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)
d/
\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)
e/
\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)
Các câu c, e đều sử dụng kết quả từ câu b
f/
\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)
\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)
\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)
\(=2.\left(-2sin^2x\right)^2=8sin^4x\)
g/
\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)
h/
\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
i/
\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
j/
\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
a/
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=x^2-4\\x^2-5x-4=4-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-5x=0\\2x^2-5x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5\pm\sqrt{89}}{4}\\\end{matrix}\right.\)
b/ - Với \(x\ge3\) pt trở thành:
\(x-1+3\left(x-3\right)=6\Leftrightarrow4x=16\Rightarrow x=4\)
- Với \(x\le1\) pt trở thành:
\(1-x+3\left(3-x\right)=6\)
\(\Leftrightarrow x=1\)
- Với \(1< x< 3\) pt trở thành:
\(x-1+3\left(3-x\right)=6\)
\(\Leftrightarrow-2x=-2\Rightarrow x=1\) (loại)
c/ ĐKXĐ: \(x\ne\pm2\)
\(\left[{}\begin{matrix}\frac{x^2-6x-4}{x^2-4}=1\\\frac{x^2-6x-4}{x^2-4}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-4=x^2-4\\x^2-6x-4=4-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-6x=0\\2x^2-6x-8=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=4\end{matrix}\right.\)
d/ - Với \(x\ge2\) pt trở thành:
\(x-1-2\left(x-2\right)=x^2-x-3\)
\(\Leftrightarrow x^2=6\Rightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x\le1\) pt trở thành:
\(1-x-2\left(2-x\right)=x^2-x-3\) làm tương tự
- Với \(1< x< 2\):
\(x-1-2\left(2-x\right)=x^2-x-3\)
ĐKXĐ : \(x\ne-1\)
Ta có \(\frac{x^4+1}{\left(x^2+1\right)\left(x+1\right)^2}=\frac{17}{45}\Leftrightarrow\frac{\left(x^2+1\right)^2-2x^2}{\left(x^2+1\right)\left(x^2+1+2x\right)}=\frac{17}{45}\)
Đặt \(a=x^2+1\), \(b=x\) thì PT đã cho trở thành
\(\frac{a^2-2b^2}{a\left(a+2b\right)}=\frac{17}{45}\) \(\Leftrightarrow2\left(2a-5b\right)\left(7a+9b\right)=0\)
Tới đây bạn tự giải đc rồi nhé :)