Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chả cần thiết phải quy đồng nhé bn , bn có thể lm thế này
\(-\frac{3}{x-1}=\frac{x-1}{-27}\)
\(\left(x-1\right)^2=81\)
\(\Rightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\x=-8\end{cases}}}\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
a)
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\\ \Leftrightarrow\frac{201-x}{99}+\frac{99}{99}+\frac{203-x}{97}+\frac{97}{97}+\frac{205-x}{95}+\frac{95}{95}+4=4\\ \Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\) (*)
Do \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)\ne0\)
nên (*) \(\Leftrightarrow300-x=0\\ \Leftrightarrow x=300\)
b)
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\\ \Leftrightarrow\frac{2-x}{2002}+\frac{2002}{2002}-1+1=\frac{1-x}{2003}+\frac{2003}{2003}-\frac{x}{2004}+\frac{2004}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}-\frac{2004-x}{2003}+\frac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\) (*)
Do \(\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
nên (*) \(\Leftrightarrow2004-x=0\)
\(\Leftrightarrow x=2004\)
c) \(\left|2x-3\right|=2x-3\) (1)
ĐKXĐ: \(\\ 2x-3\ge0\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-3=2x-3\\2x-3=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\forall x\in R\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\frac{3}{2}\right\}\)
Sửa đề:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\\\Leftrightarrow \frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\\ \Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\\\Leftrightarrow \left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\\\Leftrightarrow x+66=0\left(Vi\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)\\ \Leftrightarrow x=-66\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-66\right\}\)
\(a,⇔\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
\(⇔(x-23)(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27})=0\)
\(⇔x-23=0\) (vì \(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}>0\))
\(⇔x=23\)
\(b,⇔\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}+\frac{x+100}{95}=0\)
\(⇔(x+100)(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95})=0\)
\(⇔x+100=0\) (vì \(\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}>0\))
\(⇔x=-100\)
\(c,⇔(\frac{x+1}{2012}+1)+(\frac{x+2}{2011}+1)=(\frac{x+3}{2010}+1)+(\frac{x+4}{2009}+1)\)
\(⇔\frac{x+2013}{2012}+\frac{x+2013}{2011}-\frac{x+2013}{2010}-\frac{x+2013}{2009}=0\)
\(⇔(x+2013)(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009})=0\)
\(⇔x+2013=0\) (vì \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}<0\))
\(⇔x=-2013\)
\(\frac{201-x}{99}+\frac{203}{97}=\frac{205}{95}+3\)
\(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\frac{2-x}{2010}-1=\frac{1-x}{2011}-\frac{x}{2012}\)
Giúp mk với ạ
Giải các pt sau:
a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2
\(\frac{x+2}{5}< \frac{x+2}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{30}< \frac{10\left(x+2\right)}{30}+\frac{15}{30}\)
\(\Leftrightarrow\frac{6x+12}{30}< \frac{10x+20}{30}+\frac{15}{30}\)
\(\Leftrightarrow6x+12< 10x+20+15\)
\(\Leftrightarrow6x-10x< 20+15-12\)
\(\Leftrightarrow-4x< 23\)
\(\Leftrightarrow x>-\frac{23}{4}\)
Vậy tập nghiệm của bất phương trình là \(x>-\frac{23}{4}\)
\(\frac{x+2}{4}-x< \frac{1}{3}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow\frac{3x+6}{12}-\frac{12x}{12}< \frac{4}{12}\)
\(\Leftrightarrow3x+6-12x< 4\)
\(\Leftrightarrow3x-12x< 4-6\)
\(\Leftrightarrow-9x< -2\)
\(\Leftrightarrow x>\frac{2}{9}\)
Vậy tập nghiệm của bất phương trình là \(x>\frac{2}{9}\)
\(\frac{2x-1}{x+2}< 0\)( ĐKXĐ : \(x\ne-2\))
Xét hai trường hợp
1/ \(\hept{\begin{cases}2x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x>-2\end{cases}}\Rightarrow-2< x< \frac{1}{2}\)
2/ \(\hept{\begin{cases}2x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}\)( loại )
Vậy tập nghiệm của bất phương trình là \(-2< x< \frac{1}{2}\)
\(\Leftrightarrow\left(x-1\right)^2=-3.-27\)
\(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
\(\frac{-3}{x-1}=\frac{x-1}{-27}\)
=> \(\frac{81}{-27.\left(x-1\right)}=\frac{\left(x-1\right)^2}{-27.\left(x-1\right)}\)
=> \(81=\left(x-1\right)^2\)
=> \(x-1=9\) hoặc x - 1 = -9
=> x = 9 + 1 = 10 x = -9 + 1 = - 8