\(|\)x+1\(|\)=3

b, 6-

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

\(x-2\left|x+1\right|=3\\ -2\left|x+1\right|=3-x\)

\(\left[{}\begin{matrix}nếu\:x\ge-1\:thì\left|x+1\right|=x+1\\nếu\:x< -1\:thì\:\left|x+1\right|=-x-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-2\left(x+1\right)=3-x\left(với\: x\ge-1\: \right)\\-2\left(-x-1\right)=3-x\left(với\: x< -1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2x-2=3-x\\2x+2=3-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=-\dfrac{1}{3}\left(loại\right)\end{matrix}\right.\)

vậy phương trình đã cho vô nghiệm.

b)

\(6-\left|3x-1\right|=5\\ -\left|3x-1\right|=-1\\ \left|3x-1\right|=1\\ \Rightarrow\left[{}\begin{matrix}3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=0\end{matrix}\right.\)

vậy phương trình đã cho có tập nghiệm là S={0;2/3}

c)

\(\left|2x-1\right|=x+2\\ \Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\\ \left(2x-1\right)^2-\left(x+2\right)^2=0\\ \left(2x-1+x+2\right)\left(2x-1-x-2\right)=0\\ \left(3x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)

vậy phương trình đã cho có tập nghiệm là S={-1/3;3}

d)

\(\left|2x-7\right|-x-3=0\\ \left|2x-7\right|=x+3\\ \Rightarrow\left(2x-7\right)^2=\left(x+3\right)^2\\ \left(2x-7\right)^2-\left(x+3\right)^2=0\\ \left(2x-7+x+3\right)\left(2x-7-x-3\right)=0\\ \left(3x-4\right)\left(x-10\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\x-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=10\end{matrix}\right.\)

vậy phương trình đã cho có tập nghiệm là S={4/3;10}

25 tháng 8 2017

Nguyễn Huy Tú Akai Haruma Hồng Phúc Nguyễn Toshiro Kiyoshi giúp mk vs

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

9 tháng 2 2020

\(1.a.\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\\\Leftrightarrow 4x-3=x-12\\ \Leftrightarrow4x-x=3-12\\\Leftrightarrow 3x=-9\\ \Leftrightarrow x=-3\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{3\right\}\)

\(b.\left(3x-1\right)\left(x-5\right)=\left(3x-1\right)\left(x+2\right)\\\Leftrightarrow x-5=x+2\\ \Leftrightarrow x-x=5+2\\ \Leftrightarrow0=7\left(sai\right)\)

\(\Rightarrow\) Vô nghĩa (Vô nghiệm)

\(c.x^2-5x+6=0\\\Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Rightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{3;2\right\}\)

9 tháng 2 2020

a, \(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)

<=> \(\left(2x^2+1\right)\left(4x-3\right)-\left(2x^2+1\right)\left(x-12\right)=0\)

<=> \(\left(2x^2+1\right).\left(4x-3-x+12\right)=0\)

=> \(2x^2+1=0\) hoặc 3x + 9 = 0

=> \(2x^2=-1\) 3x = -9

=> \(x^2=\frac{-1}{2}\) ( vô lý ) x = -3

vậy phương trình có no S = -3

b , ( 3x -1) (2x - 5) = (3x - 1)(x +2)

=> (3x -1) ( 2x - 5) - (3x - 1)(x + 2)=0

=> ( 3x -1 ) ( 2x - 5 - x - 2) = 0

=> 3x - 1 = 0 và x - 7 = 0

x = \(\frac{-1}{3}\) x = 7

c, \(x^2-5x+6=0=>x^2-3x-2x+6=0\)

=> x.( x - 2) - 3.(x -2 ) =0

=> ( x - 3).(x -2) =0

x -3 = 0 và x -2 = 0

x = 3 x =2

a)

\(4x-10< 0\\ 4x< 10\\ x< \dfrac{10}{4}=\dfrac{5}{2}\)

b)

\(2x+x+12\ge0\\ 3x\ge-12\\ x\ge-\dfrac{12}{3}=-4\)

c)

\(x-5\ge3-x\\ 2x\ge8\\ x\ge4\)

d)

\(7-3x>9-x\\ -2>2x\\ x< -1\)

đ)

\(2x-\left(3-5x\right)\le4\left(x+3\right)\\ 2x-3+5x\le4x+12\\ 3x\le15\\ x\le5\)

e)

\(3x-6+x< 9-x\\ 5x< 15\\ x< 3\)

f)

\(2t-3+5t\ge4t+12\\ 3t\ge15\\ t\ge5\)

g)

\(3y-2\le2y-3\\ y\le-1\)

h)

\(3-4x+24+6x\ge x+27+3x\\ 0\ge2x\\ 0\ge x\)

i)

\(5-\left(6-x\right)\le4\left(3-2x\right)\\ 5-6+x\le12-8x\\ \\ 9x\le13\\ x\le\dfrac{13}{9}\)

k)

\(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\\ 10x-15-20x+28\ge19-2x-22\\ 13-10x\ge-2x-3\\ -8x\ge-16\\ x\le\dfrac{-16}{-8}=2\)

l)

\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\\ \dfrac{40x-100}{60}-\dfrac{90x-30}{2}< \dfrac{36-12x}{60}-\dfrac{30x-15}{60}\\ \Rightarrow40x-100-90x+30< 36-12x-30x+15\\ 130-50x< 51-42x\\ 92x< -79\\ x< -\dfrac{79}{92}\)

m)

\(5x-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+x\\ \dfrac{10x}{2}-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+\dfrac{2x}{2}\\ \Rightarrow10x-3+2x>7x-5+2x\\ 12x-3>9x-5\\ 3x>-2\\ x>-\dfrac{2}{3}\)

n)

\(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\\ \dfrac{28x-8}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3x-6}{12}\\ \Rightarrow28x-8-24x< 60-3x+6\\ 4x-8< -3x+66\\ 7x< 74\\ x< \dfrac{74}{7}\)

25 tháng 8 2017

a) \(4x-10< 0\)

\(\Leftrightarrow4x< 10\)

\(\Leftrightarrow x< \dfrac{5}{2}\)

b) ???

c) \(x-5\ge3-x\)

\(\Leftrightarrow2x-5\ge3\)

\(\Leftrightarrow2x\ge8\)

\(\Leftrightarrow x\ge4\)

d) \(7-3x>9-x\)

\(\Leftrightarrow7-2x>9\)

\(\Leftrightarrow-2x>2\)

\(\Leftrightarrow x< -1\)

đ) ???

e) \(3x-6+x< 9-x\)

\(\Leftrightarrow4x-6< 9-x\)

\(\Leftrightarrow5x-6< 9\)

\(\Leftrightarrow5x< 15\)

\(\Leftrightarrow x< 3\)

f) ???

g) ???

h) \(3-4x+24+6x\ge x+27+3x\)

\(\Leftrightarrow2x+27\ge4x+27\)

\(\Leftrightarrow-2x\ge0\)

\(\Leftrightarrow x\le0\)

i) \(5-\left(6-x\right)\le4\left(3-2x\right)\)

\(\Leftrightarrow5-6+x\le12-8x\)

\(\Leftrightarrow x-1\le12-8x\)

\(\Leftrightarrow9x-1\le12\)

\(\Leftrightarrow9x\le13\)

\(\Leftrightarrow x\le\dfrac{13}{9}\)

k) \(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\)

\(\Leftrightarrow10x-15-20x+28\ge19-2x-22\)

\(\Leftrightarrow-10x+23\ge-3-2x\)

\(\Leftrightarrow-8x+13\ge-3\)

\(\Leftrightarrow-8x\ge-16\)

\(\Leftrightarrow x\ge2\)

l) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\)

\(\Leftrightarrow-\dfrac{5}{6}x-\dfrac{7}{6}< -\dfrac{7}{10}x+\dfrac{17}{20}\)

\(\Leftrightarrow-\dfrac{2}{15}x-\dfrac{7}{6}< \dfrac{17}{20}\)

\(\Leftrightarrow-\dfrac{2}{15}x< \dfrac{121}{60}\)

\(\Leftrightarrow x>-\dfrac{121}{8}\)

m, n) làm tương tự:

đáp án: m. \(x>-\dfrac{2}{3}\); n. \(x< \dfrac{74}{7}\)

1 tháng 4 2020

Giải các pt sau:

a) (x+4)(2x-3)=0
TH1: x+4=0 => x=-4
TH2 : 2x-3=0 => 2x=3 =>x=3/2

1 tháng 4 2020

b.

3x-1=7-x
=>3x-1-(7-x)=0
=>3x-1-7+x=0
=>4x-8=0
=>4x=8
=>x=2

20 tháng 2 2020

a) \(\frac{4x-8}{2x^2+1}=0\)

\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Vậy x=2

b)

\(\frac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

10 tháng 3 2020
https://i.imgur.com/YWtqvwj.jpg
10 tháng 2 2018

a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)

\(3x^2+10x-8=5x^2-2x+10\)

\(3x^2-5x^2+10x+2x-8-10=0\)

\(-2x^2+12x-18=0\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

b) \(\frac{x^2-x-6}{x-3}=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

10 tháng 2 2018

Gin hotaru  

12 tháng 3 2020

\(h.\left(x+1\right)\left(x-1\right)^2-\left(x+1\right)\left(x-2\right)^2=0\\\Leftrightarrow \left(x+1\right)\left(x-1-x+2\right)\left(x-1+x-2\right)=0\\\Leftrightarrow \left(x+1\right)\left(2x-3\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+1=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{-1;\frac{3}{2}\right\}\)

12 tháng 3 2020

\(f.x^3+1+\left(x^2-x+1\right)=0\\\Leftrightarrow \left(x+1\right)\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\\ \Leftrightarrow\left(x+1+1\right)\left(x^2-x+1\right)=0\\ \Leftrightarrow x+2=0\\\Leftrightarrow x=-2\)

Vậy nghiệm của phương trình trên là \(-2\)