![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.a.\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\\\Leftrightarrow 4x-3=x-12\\ \Leftrightarrow4x-x=3-12\\\Leftrightarrow 3x=-9\\ \Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3\right\}\)
\(b.\left(3x-1\right)\left(x-5\right)=\left(3x-1\right)\left(x+2\right)\\\Leftrightarrow x-5=x+2\\ \Leftrightarrow x-x=5+2\\ \Leftrightarrow0=7\left(sai\right)\)
\(\Rightarrow\) Vô nghĩa (Vô nghiệm)
\(c.x^2-5x+6=0\\\Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Rightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;2\right\}\)
a, \(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
<=> \(\left(2x^2+1\right)\left(4x-3\right)-\left(2x^2+1\right)\left(x-12\right)=0\)
<=> \(\left(2x^2+1\right).\left(4x-3-x+12\right)=0\)
=> \(2x^2+1=0\) hoặc 3x + 9 = 0
=> \(2x^2=-1\) 3x = -9
=> \(x^2=\frac{-1}{2}\) ( vô lý ) x = -3
vậy phương trình có no S = -3
b , ( 3x -1) (2x - 5) = (3x - 1)(x +2)
=> (3x -1) ( 2x - 5) - (3x - 1)(x + 2)=0
=> ( 3x -1 ) ( 2x - 5 - x - 2) = 0
=> 3x - 1 = 0 và x - 7 = 0
x = \(\frac{-1}{3}\) x = 7
c, \(x^2-5x+6=0=>x^2-3x-2x+6=0\)
=> x.( x - 2) - 3.(x -2 ) =0
=> ( x - 3).(x -2) =0
x -3 = 0 và x -2 = 0
x = 3 x =2
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2-x+3x-1=0\)
\(\Leftrightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
b)
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
a, \(3x^2+2x-1=0\)
\(\Rightarrow3x^2-x+3x-1=0\)
\(\Rightarrow\left(3x^2-x\right)+\left(3x-1\right)=0\)
\(\Rightarrow x.\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right).\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x=1\\x=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
Vậy......
b, \(x^2-5x+6=0\)
\(\Rightarrow x^2-3x-2x+6=0\)
\(\Rightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)
\(\Rightarrow x.\left(x-3\right)-2.\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x-2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy......
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
f, 3x2+4x-4=0
\(\Leftrightarrow\)3x2+6x-2x-4=0
\(\Leftrightarrow\)3x(x+2)-2(x+2)=0
\(\Leftrightarrow\)(x+2)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)
Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.ĐK: 2x2+1\(\ne0\) \(\forall x\)
Để phương trình bằng 0 thì 4x-8=0 ( Vì 2x2+1 >0 với mọi x)
\(\Leftrightarrow x=2\) (TM)
Vậy ...
b.ĐK: x-3\(\ne0\) \(\Leftrightarrow x\ne3\)
Để phương trình bằng 0 thì x2-x-6=0 (Vì x-3\(\ne0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=2\:\left(TM\right)\\x=-3\:\left(TM\right)\end{matrix}\right.\)
Vậy ...
c. ĐK: x\(\ne\)2
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}=\frac{2x-3}{2\left(x-2\right)}\)
\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)}{6\left(x-2\right)}=\frac{3\left(2x-3\right)}{6\left(x-2\right)}\)
\(\Leftrightarrow2x+10-3x+6=6x-9\) (x\(\ne\)2)
\(\Leftrightarrow x=\frac{25}{7}\left(TM\right)\)
Vậy ...
d. ĐK: \(x\ne\pm\frac{1}{3}\)
\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
\(\Leftrightarrow\frac{12}{1-9x^2}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{1-9x^2}\)
\(\Leftrightarrow12=1-6x+9x^2-1-6x-9x^2\) (\(x\ne\pm\frac{1}{3}\))
\(\Leftrightarrow x=-2\:\left(TM\right)\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
a, x2- 2x +8 >0 =>(x-1)2+7>0(dung voi moi x)
=> \(x\in R\)
b, x2- 3x -10 <0 \(\Leftrightarrow x^2-5x+2x-10< 0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)< 0\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 5\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x>5\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2< x< 5\\x>5\end{matrix}\right.\)
c,\(2x^2-3x+4>0\Leftrightarrow2\left(2x^2-3x+4\right)>0\)
\(\Leftrightarrow4x^2-6x+8>0\Leftrightarrow\left(2x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\)
(la dang thuc dung voi moi x)\(\Rightarrow x\in R\)
d, \(6x^2-13x+6\le0\)
\(\Leftrightarrow6x^2-9x-4x+6\le0\Leftrightarrow\left(2x-3\right)\left(3x-2\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{3}{2}\\x\ge\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x\le\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}\le x\le\dfrac{3}{2}\\x\ge\dfrac{3}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
\(\left(2x-2\right)\left(6+3x\right)\left(3x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x-2=0\\6+3x=0\\2x+2=0\end{cases}}\)(hoặc chứ ko pk và nha)
\(x\in\left\{1;-2;-1\right\}\)