\(2\sqrt{2+x-x^2}=1+\frac{1}{x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

Ta có : \(2\sqrt{2+x-x^2}=1+\frac{1}{x}\)

          \(\Leftrightarrow4\left(2+x-x^2\right)=\left(1+\frac{1}{x}\right)^2\)

          \(\Leftrightarrow8+4x-4x^2=1+\frac{2}{x}+\frac{1}{x^2}\) 

          \(\Leftrightarrow8x^2+4x^3-4x^4=x^2+2x+1\) 

          \(\Leftrightarrow4x^4-4x^3-7x^2+2x+1=0\)

          \(\Leftrightarrow4x^4-2x^3-2x^3+x^2-8x^2+4x-2x+1=0\)

          \(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(2x^3-x^2-4x-1\right)=0\)

           

13 tháng 1 2019

Câu trả lời của bạn Nguyễn Hoàng ko sai. Nhưng mình lại có cách làm khác và ra kết quả khác.

\(2\sqrt{2+x-x^2}=\frac{x+1}{x}\left(x\ne0\right)\\ 2x\sqrt{\left(x-2\right)\left(x+1\right)}=x+1\\ 4x^2\left(x-2\right)\left(x+1\right)=\left(x+1\right)^2\)

\(4x^2\left(x-2\right)\left(x+1\right)-\left(x+1\right)^2=0\\ \left(x+1\right)\left(4x^2\left(x-2\right)-\left(x+1\right)\right)=0\\ \left(x+1\right)\left(4x^3-8x^2-x-1\right)=0\\ \orbr{\begin{cases}x=-1\\x=2,168455992\end{cases}}\)

trong khi đó bạn ra nghiệm x= 1/2 và x=-1, x = 1,780776406, x = -0,2807764064

VẬY RỐT CUỘC LÀ KẾT QUẢ NÀO SAI? CÓ GÌ BẠN GỬI PHẢN HỒI SỚM GIÚP MÌNH NHÉ. THANKS!!

20 tháng 8 2017

câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi

16 tháng 8 2019

ĐK: \(0\le x\le1\)

Đặt \(t=\sqrt{x}+\sqrt{1-x}\) ( \(t>0\) )

\(\Leftrightarrow t^2=x+1-x+2\sqrt{x\left(1-x\right)}\)

\(\Leftrightarrow t^2-1=2\sqrt{x-x^2}\)

\(\Leftrightarrow\frac{t^2-1}{2}=\sqrt{x-x^2}\)

Ta có \(pt\Leftrightarrow1+\frac{2}{3}\cdot\frac{t^2-1}{2}=t\)

\(\Leftrightarrow1+\frac{t^2-1}{3}-t=0\)

\(\Leftrightarrow t^2-1-3t+3=0\)

\(\Leftrightarrow t^2-3t+2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{matrix}\right.\)

TH1: \(\sqrt{x}+\sqrt{1-x}=1\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=1\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)( thỏa (

TH2: \(\sqrt{x}+\sqrt{1-x}=2\)

\(\Leftrightarrow x+1-x+2\sqrt{x\left(1-x\right)}=4\)

\(\Leftrightarrow\sqrt{x\left(1-x\right)}=\frac{3}{2}\)

\(\Leftrightarrow x\left(1-x\right)=\frac{9}{4}\)

\(\Leftrightarrow4x\left(1-x\right)=9\)

\(\Leftrightarrow4x^2-4x+9=0\)

\(\Leftrightarrow\left(2x+1\right)^2+8=0\)( vô lý )

Vậy \(x\in\left\{0;1\right\}\)

21 tháng 6 2018

a) \(\sqrt{\frac{5x-4}{x+1}}=2\)

ĐK : \(\frac{5x-4}{x+1}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}5x-4\ge0\\x+1>0\end{cases}}\) hoặc \(\hept{\begin{cases}5x-4\le0\\x+1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{4}{5}\\x>-1\end{cases}}\)       Hoặc \(\hept{\begin{cases}x\le\frac{4}{5}\\x< -1\end{cases}}\)

\(\Leftrightarrow x\ge\frac{4}{5}\)  Hoặc \(x< -1\)

\(\sqrt{\frac{5x-4}{x+1}}=2\)

\(\Leftrightarrow\left(\sqrt{\frac{5x-4}{x+1}}\right)^2=2^2\)

\(\Leftrightarrow\frac{5x-4}{x+1}=4\)

\(\Leftrightarrow5x-4=4\left(x+1\right)\)

\(\Leftrightarrow5x-4=4x+4\)

\(\Leftrightarrow x=8\) (nhận)

Vậy x = 8

P/s : Em không chắc lắm

21 tháng 6 2018

MMS_Hồ Khánh Châu em đúng ròi đoá :3 

\(b)\) ĐKXĐ : \(\hept{\begin{cases}5x-4\ge0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}5x\ge4\\x>-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{4}{5}\\x>-1\end{cases}\Leftrightarrow}x\ge\frac{4}{5}}\)

\(\Leftrightarrow\)\(\sqrt{\frac{5x-4}{x+1}}=2\)

Đến đây bạn giải tương tự câu \(a)\) bài của bạn MMS_Hồ Khánh Châu

Chúc bạn học tốt ~ 

\(\frac{\sqrt{5x-4}}{\sqrt{x+1}}=2\)

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy 

12 tháng 7 2020

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

12 tháng 7 2020

Mik ko gửi đc link , ib riêng nhé