\(x\left(x+2\right)^2\left(x+4\right)\le5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

gợi ý nhé

đặt x+2 = a

=) x(x+2)2(x+4) = (a-2).a2.(a+2)= (a2-4).a2=a4-4a2 <= 5 (=) a4-4a2-5 <= 0 

đặt a2= t =) t2-4t-5 <= 0 

giải t =) a =) x

chúc bn học tốt (chưa hiểu chỗ nào bn cứ hỏi nhé)

8 tháng 10 2018

mk làm 1 câu các câu còn lại tương tự nha :

a) ta có : \(pt\Leftrightarrow x^2-6x+9=-y^2-10y+33\)

\(\Leftrightarrow\left(x-3\right)^2=-y^2-10y+33\ge0\)

\(\Leftrightarrow-5-\sqrt{58}\le y\le-5+\sqrt{58}\) \(\Rightarrow x\in\left\{-12;-11;-10;...;1;2\right\}\) có y thế vào tìm x

8 tháng 10 2018

giups mik giải chi tiết đi mik bận lắm

2 tháng 5 2017

a/ Thay m=-1 vào phương trình (1) ta được:

\(x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)

b/ Xét phương trình (1) có

\(\Delta=\left(m+2\right)^2-4.2m\)

= \(m^2-4m+4=\left(m-2\right)^2\)

Ta có: \(\left(m-2\right)^2\ge0\) với mọi m

\(\Leftrightarrow\Delta\ge0\) với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

27 tháng 5 2018

1) Liên hợp hay bình phương gì gì cx được nếu bạn rảnh =))

2)Giải PT : $5^{x}= 3^{x}+ 4^{x}$ - Các bài toán và vấn đề về PT - HPT - BPT - Diễn đàn Toán học

27 tháng 5 2018

4) Câu hỏi của VanCan - Toán lớp 8 - Học toán với OnlineMath

4 tháng 8 2020

\(x^2_2-2\left(m+1\right)x_2+6m-4=0\) la sao

AH
Akai Haruma
Giáo viên
4 tháng 8 2020

Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.

13 tháng 7 2016

1/ \(\left(x-1\right)\left(x^2-2x-2\right)=0\)

     \(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\x^2-2x-2=0\left(2\right)\end{cases}}\)

   + Từ (1) => x = 1

   +  Từ (2) . Ta có: \(\Delta=\left(-2\right)^2-4\left(-2\right)=12\Rightarrow\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

       \(\Rightarrow\orbr{\begin{cases}x=\frac{2+2\sqrt{3}}{2}=1+\sqrt{3}\\x=\frac{2-2\sqrt{3}}{2}=1-\sqrt{3}\end{cases}}\)

                      Vậy \(x=\left\{1+\sqrt{3};1-\sqrt{3};1\right\}\)

2/ \(\left(x-1\right)^2\left(2x^2-x+2\right)=0\)

    \(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

    + Từ (1) => x = 1

    + Từ (2). Ta có: \(2x^2-x+2=2\left(x^2-\frac{1}{2}x+1\right)\)

                   \(=2\left(x^2-2.\frac{1}{4}x+\frac{1}{16}-\frac{1}{16}+1\right)\)

                    \(=2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\)

                     => pt (2) vô nghiệm

                                                                      Vậy x = 1

13 tháng 7 2016

a)(x-1)(x2-2x-2)=0

=>x-1=0 hoặc x2-2x-2=0

  • Với x-1=0 =>x=1
  • Với x2-2x-2=0 =>denta=(-2)2-(-4(1.2))=12

=>x1,2=(2±căn 12)/2=1- căn 3 hoặc căn 3+1

b)(x-1)2(2x2-x+2)=0

=>(x-1)2=0 hoặc 2x2-x+2=0

  • Với (x-1)2=0  =>x=1
  • Với 2x2-x+2=0 =>denta=(-1)2-4(2*2)=-15

Với Denta<0 =>vô nghiệm

Vậy x=1

27 tháng 5 2017

<=>\(\left(2x^2+2\right)^2-\left(x^2-5x-2\right)^2=0\)

<=>\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)

<=>\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)

<=>\(\left(x+1\right)\left(x+4\right)x\left(3x-5\right)=0\)

<=>x+1=0 hoặc x+4=0 hoặc x=0 hoặc 3x-5=0

<=>x=-1 hoặc x=-4 hoặc x=0 hoặc x=5/3

27 tháng 5 2017

bài này dùng hằng đẳng thức a2-b2= (a-b)(a+b)

\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)

\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)

  • \(x^2+5x+4=0\)<=> \(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
  • \(3x^2-5x=o\)<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\) việc còn lại bạn tự làm nhé kết luận nghiệm