Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Đưa về phương trình bậc 2 ẩn yy, tham số xx)
Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0
Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x
Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.
Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)
Lập bảng xét giá trị ta được các giá trị của xx và yy:
x=−10→y=6tm;x=−10→y=6tm;
x=−6→y=6tm;x=−6→y=6tm;
x=−4→y=4,5ktm;x=−4→y=4,5ktm;
x=0→y=2tmx=0→y=2tm
Vậy...
1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1)
Thay \(x=99\) vào (1) ta có:
4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501
a, \(\left(x-3\right)\left(6x^2-2x+1\right)=6x^3-2x^2+x-18x^2+6x-3=6x^3-20x^2+7x-3\)
b, \(\left(\frac{1}{2}xy-1\right)\left(2x^2y+y\right)=x^3y^2+\frac{xy^2}{2}-2x^2y-y\)
c, \(\left(x^2y^2-3xy+2x\right)\left(x-3y\right)=x^3y^2-3x^2y^3-3x^2y+9xy^2+2x^2-6xy\)
trả lời cho bạn câu 1 này , bài này rất hay nhé :
vì x,y >0 nên ta xét y từ 6-15 thì sẽ tìm ra đc giá trị của x
mình làm thế là cũng có cái lý do là nếu y < 5 thì nếu thay y = 5 vao biểu thức ta có xy-5x+2y=30 =>5x-5x+8=30=> 0=30-9=26( vô lý vì lúc này x sẽ là 1 số âm), , và các giá trị y < 5 đều cho ta giá trị của x là 1 số âm , vậy là mình đã chặn xg y >5
+ với cách chặn y < hoặc bằng 15 với lý do ( nếu thay y > 15, ví dụ 16 chẳng hạn thì ta có xy-5x+2y=30 => 16x-5x+32 =30 => 11x=-2 ( vô lý vì lúc này x nhận giá trị âm )
vì vậy mình thử y từ 6-> 15 đc các giá trị sau của x thỏa mãn này ( các giá trị của x)
X=18; X=8 ; X=3 ; X=2 ; X=0
vì người ta ko hỏi đến ý nên ta ko phải tính giá trị của Y chỉ quan tâm đến giá trị của x thôi
vì bài này mình cũng mới biết nên có chỗ nào tính toán sai các bạn bảo mình nhé
mình ra tổng các giá trị của x=18+8+2+3+0=31
Cách 1:
PT $\Leftrightarrow x^2(1-y^2)+3xy+y^2=0$
Coi đây là PT bậc 2 ẩn $x$. PT có nghiệm nguyên khi mà:$\Delta=(3y)^2-4y^2(1-y^2)$ là scp
$\Leftrightarrow 4y^4+5y^2$ là scp
$\Leftrightarrow y^2(4y^2+5)$ là scp
$\Leftrightarrow 4y^2+5$ là scp.
Đặt $4y^2+5=a^2$ với $a$ là số tự nhiên.
$\Rightarrow 5=a^2-4y^2=(a-2y)(a+2y)$
Đây là dạng PT tích cơ bản (đơn giản)
Cách 2:
$x^2+y^2+3xy=(xy)^2$$\Leftrightarrow (x+y)^2+xy=(xy)^2$
$\Leftrightarrow (x+y)^2=(xy)^2-xy=xy(xy-1)$
Dễ thấy $xy, xy-1$ nguyên tố cùng nhau. Mà tích của $xy(xy-1)$ là số chính phương nên bản thân mỗi số $|xy|, |xy-1|$ cũng là số chính phương
Đặt $|xy|=a^2; |xy-1|=b^2 với $a,b$ là số tự nhiên.
$\Rightarrow xy=\pm a^2; xy-1=\pm b^2$
Đến đây thì đơn giản rồi, xét từng TH thôi.