Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được
\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)
Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc
\(2y^2+x^2y+x+3x^2-3xy=0\)
\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)
Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x
Ta có \(\Delta=-8y^3-15y^2-6y+1\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)
mà y nguyên dương => y thuộc rỗng
=> Pt đã cho ko có nghiệm nguyên dương
Bài 1: Cho em hỏi : tìm nghiệm nguyên 19x^2+28y^2=729 và rút gọn (8+8^1/2+20^1/2+40^1/2)^1/2? | Yahoo Hỏi & Đáp
Bài 2:
a/ \(xy-x-y=2\)
\(\Leftrightarrow x\left(y-1\right)-y=2\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)
\(\Leftrightarrow\left(y-1\right)\left(x-1\right)=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\\y-1\end{matrix}\right.\)\(\inƯ\left(3\right)\)
Giả sử \(x\ge y\) \(\Rightarrow x-1\ge y-1\)
Ta có:
x-1 | 3 | -1 |
y-1 | 1 | -3 |
x | 4 | 0 |
y | 2 | -2 |
Vậy nghiệm nguyên của pt là:
(x;y) = (4;2) ; (0;-2); (2;4) ; (-2;0)
b/ pt thành nhân tử -->
< = >(x-y-1)(x+y-1) = 10
xét như ý a (cái chỗ này thì e k chắc lắm)
c, d: E chưa lm đc
Đặt x=y=-2, pt trở thành:
\(\left(x+2\right)^2z+\left(z+2\right)^2x+26=0\Leftrightarrow\left(x+z+8\right)\left(xz+4\right)=6\)\(\Rightarrow x+z+8\in U\left(6\right)\)
Giải các TH ta thu được cặp số (x;y) thoả mãn đk là:
(x;y)=(1;-1), (3,-3), (-10;3), (1;-8)