Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
a) Nếu y chia hết cho 3 thì 4y2 cũng chia hết cho 3. Mà 3x2chia hết cho 3 nên 3x2-4y2chia hết cho 3. Mặt khác: 13 ko chia hết cho 3 nên pt vô nghiệm
Nếu y ko chia hết cho 3 thì: y2chia 3 luôn dư 1 => 4y2 chia 3 dư 1 => 3x2-4y2chia 3 dư 3( vì 3x2 chia hết cho 3)
b) Làm tương tự câu a (ở đây khác dư khi chia cho 4)
c) Pt \(\Leftrightarrow\) x2+5=2(y-2)2. Dễ dàng thấy x ở đây lẻ nên làm x2+5 chia 8 dư 6. Mà 2(y-2)2 chia 8 chỉ có thể dư: 0;2 nên pt vô nghiệm.
d) Pt\(\Leftrightarrow\)(x-2)(x-1)x(x+1)(x+2)=24(5y-1). Nhận thấy VT là tích 5 số nguyên liên tiếp nên chia hết cho 5; còn VP ko chia hết cho 5 nên pt vô nghiệm.
e) Giả sử cả 3 số đều chẵn thì tổng các hiệu sẽ là số chẵn (1)
Giả sử cả 3 số đều lẻ thì tổng các hiệu cũng chẵn (2)
Giả sử trong 3 số có 1 số chẵn 2 số lẻ thì tổng các hiệu cũng chẵn (3)
Giả sử trong 3 số có 1 số lẻ 2 số chẵn thì tổng các hiệu cũng chẵn (4)
Từ (1);(2);(3) và (4) suy ra pt vô nghiệm
Bài làm này chỉ áp dụng với các số nguyên x, y, z thôi bạn nhé
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
xy+3x-3y=21
<=>x(y+3)-3(y+3)-12=0
<=>(x-3)(y+3)=12
đến đây là pt ước số rồi,tự giải
ta có: \(5x-3y=2xy-11\)
<=>\(2x-2xy+3-3y+3x=-8\)
<=>\(2x\left(1-y\right)+3\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)
<=>\(\left(2x+3\right)\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)
<=>\(\left(2x+3\right)\left(1-y+\frac{3}{2}\right)=-\frac{7}{2}\)
<=>\(\left(2x+3\right)\left(2-2y+3\right)=-7\)
TH1: \(\hept{\begin{cases}2x+3=1\\2-2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}}\)
TH2:\(\hept{\begin{cases}2x+3=-1\\2-2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TH3:\(\hept{\begin{cases}2x+3=7\\2-2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
TH4:\(\hept{\begin{cases}2x+3=-7\\2-2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)
Vậy nghiệm của pt là: (x;y)={ (-1;6);(-2;-1);(2;3);(-5;2)}
\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))
TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
a: 7x+3y=65
=>7x=65-3y
hay \(x=\dfrac{65-3y}{7}\)
Khi x=1 thì 65-3y=7
=>3y=58
=>y=58/3(loại)
Khi x=2 thì 65-3y=14
=>y=17(nhận)
Khi x=3 thì 65-3y=21
=>3y=44(loại)
KHi x=4 thì 65-3y=28
=>3y=37(loại)
Khi x=5 thì 65-3y=35
=>3y=30
=>y=10(nhận)
Khi x=8 thì 65-3y=56
=>3y=9
=>y=3(nhận)
Vậy: (x,y)=(2;17); (x,y)=(5;10); (x,y)=(8;3)
b: 5x+4y=12
Khi x=1 thì 4y+5=12(loại)
Khi x=2 thì 4y+10=12(loại)
Khi x=3 thì 4y+15=12(loại)
Khi x=4 thì 4y+20=12
=>y=-2(loại)
=>\(\left(x,y\right)\in\varnothing\)
c: 3x-8y=13
=>3x=13+8y
Khi y=1 thì x=7
Khi y=4 thì x=15
Khi y=7 thì 3x=13+56=69
=>x=23
Khi y=10 thì 3x=80+13=93
=>x=31(nhận)
Vậy: y=3k+1(k\(\in\)N) và \(x=\dfrac{13+8y}{3}\)