Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(27y^3-9y^2+y-\frac{1}{27}=\left(3y-\frac{1}{3}\right)^3\)
c) \(8x^6+12x^4y+6x^2y+y^3=\left(2x^2+y\right)^3\)
d) \(\left(x+y\right)^3\left(x-y\right)^3=\left(x^2-y^2\right)^3\)
e) \(\left(x^2-y^2\right)^2\left(x+y\right)\left(x-y\right)=\left(x^2-y^2\right)^3\)
a) \(8-12x+6x^2-x^3\)
\(=-x^3+8+6x^2-12x\)
\(=-\left(x^3-2^3\right)+6x\left(x-2\right)\)
\(=-\left(x-2\right)\left(x^2+2x+4\right)+6x\left(x-2\right)\)
\(=\left(x-2\right)\left(-x^2-2x-4+6x\right)\)
\(=\left(x-2\right)\left(-x^2+4x-4\right)\)
\(=-\left(x-2\right)\left(x-2\right)^2\)
\(=-\left(x-2\right)^3\)
b) \(48x+64+x^3+12x^2\)
\(=x^3+3.4.x^2+3.x.4^2+4^3\)
\(=\left(x+4\right)^3\)
c) \(-9y^2+y-\dfrac{1}{27}+27y^3\)
\(=27y^3-9y^2+y-\dfrac{1}{27}\)
\(=\left(3y\right)^3-3.\left(3y\right)^2.\dfrac{1}{3}+3.3y.\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3\)
\(=\left(3y-\dfrac{1}{3}\right)^3\)
d) \(8x^3+150x-125-60x^2\)
\(=8x^3-60x^2+150x-125\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3\)
\(=\left(2x-5\right)^3\)
a, \(8-12x+6x^2-x^3=-\left(x^3-6x^2+12x-8\right)\)
\(=-\left(x^3-2x^2-4x^2+8x+4x-8\right)\)
\(=-\left(x-2\right)^3\)
b, \(48x+64+x^3+12x^2=x^3+4x^2+8x^2+32x+16x+24\)
\(=\left(x+4\right)^3\)
c, \(-9y^2+y-\dfrac{1}{7}+27y^3\)
(sai đề)
d, \(8x^3+150x-125-60x^2=8x^3-20x^2-40x^2+100x+50x-125\)
\(=4x^2\left(2x-5\right)-20x\left(2x-5\right)+25\left(2x-5\right)\)
\(=\left(2x-5\right)\left(4x^2-20x+25\right)=\left(2x-5\right)\left(2x-5\right)^2\)
\(=\left(2x-5\right)^3\)
Chúc bạn học tốt!!!
Bài 1 : Khai triển :
a, \(\left(x+5\right)^2=x^2+10x+25\)
b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)
d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)
e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)
g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)
h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)
8x^2(x-2)+4x(x-2)+14(x-2)=0
<=>2(x-2)(4x^2+2x+7) = 0
Ta có 4x^2+2x+7=(2x)^2+2.2x1/2 +1/4 -1/4+28/4=(2x+1/2)^2+27/4 >0 V x
=>x-2=0 <=>x=2
Vậy PT có tập No={2}
m nhìn t giải thích = mồm đây này :) super easy
\(\left(2x^4+8x^2+5\right)>0\forall x\) mũ chẵn + 1 số dương suy ra lớn hơn 0 với mọi x
cho dù có \(\left(3x^3+6x\right)< 0\) thì suy ra \(\left(2x^4+8x^2+5\right)>\left(3x^3+6x\right)\) với mọi X ok
suy ra \(\left(2x^4+8x^2+5\right)+\left(3x^3+6x\right)>0\forall x\)
từ đó suy ra Phương trình sau vô nghiệm :)
giải thích = mồm kinh ko