\(2x^2+3y^2-5xy+3x-2y-3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

PT \(\Leftrightarrow 2x^2+x(3-5y)+(3y^2-2y-3)=0(*)\)

Coi đây là pt bậc $2$ ẩn $x$. Để pt có nghiệm nguyên thì:

\(\Delta=(3-5y)^2-8(3y^2-2y-3)=t^2\) (\(t\in\mathbb{N}\) )

\(\Leftrightarrow y^2-14y+33=t^2\)

\(\Leftrightarrow (y-7)^2-16=t^2\)

\(\Leftrightarrow 16=(y-7-t)(y-7+t)\)

Lập bảng xét TH (nhớ rằng $y-7-t$ và $y-7+t$ có cùng tính chẵn lẻ và \(y-7-t\leq y-7+t\) với mọi $t\in\mathbb{N}$

để giảm bớt TH cần phải xét)

Khi đó, ta dễ dàng tìm được: \(y\in\left\{2;3;11;12\right\}\)

Thay từng giá trị của $y$ ở trên vào PT $(*)$ ta tìm được $x$:

\(y=2\Rightarrow x=1\)

\(y=3\Rightarrow x=3\)

\(y=11\Rightarrow x=13\)

\(y=12\Rightarrow x=15\)

2 tháng 3 2019

Akai Haruma Nguyễn Việt Lâm

27 tháng 8 2020

\(2x^2+7y^2+3x-6y=5xy-7\)

\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)

Thấy ngay \(VT>0\)

=> Pt vô nghiệm 

Sure ?

27 tháng 8 2020

\(2x^2+7y^2+3x-6y=5xy-7\)

<=> \(16x^2+56y^2+24x-48y=40xy-56\)

<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)

Mà \(31y^2-18y+47>0\)với mọi y 

=> (1) vô nghiệm

23 tháng 8 2017

Tìm nghiệm nguyên của pt: $x^{3}-y^{3}-2y^{2}-3y-1=0$ - Số học - Diễn đàn Toán học

24 tháng 8 2017

Ta có:

\(x^3-y^3-y^2-3y-1=0\)

\(\Leftrightarrow y^3+2y^2+3y+1=x^3\)

Dễ dàng thấy:

\(\left(y-1\right)^3< y^3+2y^2+3y+1\le\left(y+1\right)^3\)

\(\Leftrightarrow y^3+2y^2+3y+1=\left[\left(y^3\right);\left(y+1\right)^3\right]\)

Làm tiếp nhé

22 tháng 1 2017

Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số

Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số 

22 tháng 1 2017

giải zõ hộ

NV
3 tháng 3 2020

a.

\(\Leftrightarrow\left\{{}\begin{matrix}4xy+8x-6y-12=4xy-12x+54\\3xy-3x+3y-3=3xy+3y-12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20x-6y=66\\-3x=-9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x^2+xy+3=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+x\left(1-x\right)+3=0\)

\(\Leftrightarrow x+3=0\Rightarrow x=-3\Rightarrow y=4\)

NV
3 tháng 3 2020

c.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{2x-5}{3}\\x^2-y^2=40\end{matrix}\right.\)

\(\Rightarrow x^2-\left(\frac{2x-5}{3}\right)^2-40=0\)

\(\Leftrightarrow9x^2-\left(4x^2-20x+25\right)-360=0\)

\(\Leftrightarrow5x^2+20x-385=0\)

\(\Rightarrow\left[{}\begin{matrix}x=7\Rightarrow y=3\\x=-11\Rightarrow y=-9\end{matrix}\right.\)

d.

\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{36-3x}{2}\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(\frac{36-3x}{2}-3\right)=18\)

\(\Leftrightarrow\left(x-2\right)\left(10-x\right)=12\)

\(\Leftrightarrow-x^2+12x-32=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=12\\x=8\Rightarrow y=6\end{matrix}\right.\)

15 tháng 1 2019

a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)

Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)

Vậy hpt có nghiệm (0;0);(1;1).

b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)

Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)

\(\Leftrightarrow-2x+9x=2x^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy hpt có nghiệm (0;0).

c) Từ 2x-y=5\(\Rightarrow y=2x-5\)

Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:

\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)

Vậy hpt có nghiệm (3;1).