Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
Bài 1:
\(\left\{{}\begin{matrix}x+2y=1\\2x^2-5xy=48\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\2x^2-5xy=48\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2)\(\Leftrightarrow2\left(1-2y\right)^2-5\left(1-2y\right)y=48\Leftrightarrow2\left(1-4y+4y^2\right)-5y+10y^2=48\Leftrightarrow2-8y+8y^2-5y+10y^2=48\Leftrightarrow18y^2-13y-46=0\Leftrightarrow\left(y-2\right)\left(18y+23\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}y=2\\y=-\frac{23}{18}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\x=\frac{32}{9}\end{matrix}\right.\)
Vậy (x;y)={(\(-3;2\));(\(\frac{32}{9};-\frac{23}{18}\))}
Bài 2:
a) Đặt a=x2-1(a\(\ge-1\))
Vậy pt\(\Leftrightarrow a^2-4a=5\Leftrightarrow a^2-4a-5=0\Leftrightarrow\left(a-5\right)\left(a+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=5\\a=-1\end{matrix}\right.\)(tm)
TH1: a=5\(\Leftrightarrow x^2-1=5\Leftrightarrow x^2=6\Leftrightarrow x=\pm\sqrt{6}\)
TH2: a=-1\(\Leftrightarrow x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy S={\(-\sqrt{6};0;\sqrt{6}\)}
b) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\Leftrightarrow x^2+4x+4-3x-5=1-x^2\Leftrightarrow2x^2+x-2=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{-1+\sqrt{17}}{4}\\x=\frac{-1-\sqrt{17}}{4}\end{matrix}\right.\)
Vậy S={\(\frac{-1+\sqrt{17}}{4};\frac{-1-\sqrt{17}}{4}\)}
c) Đặt a=\(x^2-3x+2\)
Vậy pt\(\Leftrightarrow\left(a+2\right)a=3\Leftrightarrow a^2+2a-3=0\Leftrightarrow\left(a-1\right)\left(a+3\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)(tm)
TH1:\(a=1\Leftrightarrow x^2-3x+2=1\Leftrightarrow x^2-3x+1=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{matrix}\right.\)
TH2: a=-3\(\Leftrightarrow x^2-3x+2=-3\Leftrightarrow x^2-3x+5=0\)(vô nghiệm)
Vậy S=\(\left\{\frac{3+\sqrt{5}}{2};\frac{3-\sqrt{5}}{2}\right\}\)
ĐKXĐ: \(-4\le x\le1\)
Đặt \(\sqrt{x+4}-\sqrt{1-x}=t\)
\(\Rightarrow t^2=5-2\sqrt{\left(x+4\right)\left(1-x\right)}\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=\frac{5-t^2}{2}\)
Pt trở thành:
\(t\left(1+\frac{5-t^2}{2}\right)=3\Leftrightarrow t\left(7-t^2\right)=6\)
\(\Leftrightarrow t^3-7t+6=0\Leftrightarrow\left(t+3\right)\left(t-1\right)\left(t-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=1\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+4}-\sqrt{1-x}=-3\\\sqrt{x+4}-\sqrt{1-x}=1\\\sqrt{x+4}-\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+3=\sqrt{1-x}\left(vn\right)\\\sqrt{x+4}=1+\sqrt{1-x}\\\sqrt{x+4}=2+\sqrt{1-x}\end{matrix}\right.\) (1 vô nghiệm do \(VT\ge3;VP\le\sqrt{5}< 3\))
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2-x+2\sqrt{1-x}\\x+4=5-x+4\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{1-x}\left(x\ge-1\right)\\2x-1=4\sqrt{1-x}\left(x\ge\frac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=1-x\\4x^2-4x+1=16-16x\end{matrix}\right.\) \(\Leftrightarrow...\)
Câu 3: 9x + 5y + 18 = 2xy
<=> 9(x - 2) - 2y(x - 2) = -y - 36
<=> (x - 2)(9 - 2y) = -y - 36
<=> x - 2 = \(\dfrac{-y-36}{9-2y}\) (1)
Do x - 2 nguyên nên \(-y-36⋮9-2y\)
\(\Rightarrow2y+72⋮9-2y\)\(\Rightarrow2y+72+9-2y⋮9-2y\)
\(\Rightarrow81⋮9-2y\)\(\Rightarrow9-2y\in\left\{1;-1;3;-3;9;-9;27;-27;81;-81\right\}\)
\(\Rightarrow y\in\left\{4;5;3;6;0;9;-9;18;-36;45\right\}\)
Thay lần lượt giá trị của y vào (1) ta được các cặp giá trị (x;y) thỏa mãn là: (43;5); (-11;3); (7;9); (1;-9); (3;45)
Câu 4:
a) 2x2 + 2x + 1 = \(\sqrt{4x+1}\) (đk: \(x\ge-\dfrac{1}{4}\))
\(\Rightarrow\left(2x^2+2x+1\right)^2=4x+1\)
<=> 4x4 + 4x2 + 1 + 8x3 + 4x + 4x2 - 4x - 1 = 0
<=> 4x4 + 8x3 + 8x2 = 0 (*)
+) x = 0, thay vào (*) thỏa mãn
+) x \(\ne0\), chia cả 2 vế của (*) cho 4x2 ta được:
x2 + 2x + 2 = 0
<=> (x + 1)2 + 1 = 0, vô nghiệm
Vậy pt có nghiệm x = 0
Xửa đề:
\(\left(x+1\right)\left(x+4\right)+3\left(x+4\right)\sqrt{\frac{x+1}{x+4}}-18=0\)
Xet \(x+4>0\)
\(\Rightarrow\left(x+1\right)\left(x+4\right)+3\sqrt{\left(x+1\right)\left(x+4\right)}-18=0\)
Đặt \(\sqrt{\left(x+1\right)\left(x+3\right)}=a\)
\(\Rightarrow a^2+3a-18=0\)
Trường hợp \(x+4< 0\)
Làm tương tự
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
Đặt \(x+1=t\)
PT\(\Leftrightarrow\left(t-2\right)^4+\left(t+2\right)^4=40\)
\(\Leftrightarrow\left[\left(t-2\right)^2\right]^2+\left[\left(t+2\right)^2\right]^2=40\)
\(\Leftrightarrow\left[\left(t-2\right)^2+\left(t+2\right)^2\right]^2-2\left(t-2\right)^2\left(t-2\right)^2=40\)
\(\Leftrightarrow\left(t^2-4t+4+t^2+4t+4\right)^2-2\left(t^2-4\right)^2=40\)
\(\Leftrightarrow\left(2t^2+8\right)^2-2\left(t^2-4\right)^2=40\)
\(\Leftrightarrow...\)