\(\left(\frac{x+3}{x-2}\right)^2-7\left(\frac{x^2-9}{x^2-4}\right)+6\left(\frac{x-3}{x+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

Cái này bạn đặt x+3/x-2 = a 

x-3/x+2 = b

=> x^2-9/x^2-4 = ab

Ta có : a^2 - 7ab + 6b^2 = 0

<=> a^2 - 6ab - ab + 6b^2 = 0

PT đa thức thành nhân tử là xong :D 

NV
3 tháng 4 2019

\(x\ne\pm2\)

Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) phương trình trở thành:

\(a^2+6b^2=7ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6\left(x-3\right)}{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-5x\\x^2-7x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=6\end{matrix}\right.\)

20 tháng 1 2020

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt t = x2 + x 

<=> t(t - 2) - 24 = 0

<=> t2 - 2t - 24 = 0

<=> t2 - 6t + 4t - 24 = 0

<=> (t + 4)(t - 6) = 0

<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy S = {2; -3}

(lưu ý: thay "ktm" thành vô lý và giải thích thêm)

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0

Đặt y = x + 4

<=> (y - 1)4 + (y + 1)4 - 2 = 0

<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0

<=> 2y4 + 12y2 = 0

<=> 2y2(y2 + 6) = 0

<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)

<=> y = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = {-4}

20 tháng 1 2020

\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)

<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)

<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)

<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)

<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}

câu cuối: + 3 vào sau các phân số của pt như trên

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

13 tháng 8 2020

a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)

ĐKXĐ \(x\ne-2,-3,-4\)

=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)

=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)

=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)

=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0

=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0

=> -3x2 - 11x - 8 = 0

=> -3x2 - 3x - 8x - 8 = 0

=> -3x(x + 1) - 8(x + 1) = 0

=> (x + 1)(-3x - 8) = 0

=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)

Vậy ...

b) Thiếu dữ liệu cuả đề 

c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)

ĐKXĐ \(x\ne-2;-3\)

=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)

=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)

=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)

=> 4x2 + 29x + 52 = x + 4

=> 4x2 + 29x + 52 - x - 4 = 0

=> 4x2 + 28x + 48 = 0

=> 4(x2 + 7x + 12) = 0

=> x2 + 7x +12 = 0

=> x2 + 3x + 4x + 12 = 0

=> x(x + 3) + 4(x + 3) = 0

=> (x + 3)(x + 4) = 0

=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\) 

Mà \(x\ne-2,-3\)nên x = -3 loại

Vậy x = -4

8 tháng 1 2020

1.

\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)

\(MC:12\)

Quy đồng :

\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)

\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)

\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)

\(\Leftrightarrow6x+9-3x=-4-9+16\)

\(\Leftrightarrow-7x=3\)

\(\Leftrightarrow x=\frac{-3}{7}\)

2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)

\(MC:20\)

Quy đồng :

\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)

\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)

\(\Leftrightarrow30x+15-20=15x-2\)

\(\Leftrightarrow15x=3\)

\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)

4 tháng 12 2018

ĐK: \(x\ne\pm2\)

Phương trình đã cho tương đương với: \(\left(\frac{x+3}{x-2}\right)^2+6\left(\frac{x-3}{x+2}\right)^2-7\left(\frac{x+3}{x-2}.\frac{x-3}{x+2}\right)=0\)(1)

Đặt \(\frac{x+3}{x-2}=t,\frac{x-3}{x+2}=k\)

Khi đó (1) trở thành: \(t^2+6k^2-7tk=0\)

\(\Leftrightarrow t\left(t-6k\right)-k\left(t-6k\right)=0\Leftrightarrow\left(t-k\right)\left(t-6k\right)=0\Leftrightarrow\orbr{\begin{cases}t=k\\t=6k\end{cases}}\)

- Nếu t = k thì \(\frac{x+3}{x-2}=\frac{x-3}{x+2}\Rightarrow\left(x+3\right)\left(x+2\right)=\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow x^2+5x+6=x^2-5x+6\Rightarrow5x=-5x\Rightarrow x=0\)(thỏa mãn điều kiện)

- Nếu t = 6k thì \(\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\) 

\(\Rightarrow\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+5x+6=6x^2-30x+36\)

\(\Leftrightarrow6x^2-30x+36-x^2-5x-6=0\)

\(\Leftrightarrow5x^2-35x+30=0\Leftrightarrow5\left(x^2-7x+6\right)=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\) (thỏa mãn điều kiện)

Vậy tập nghiệm của phương trình là \(S=\left\{0;1;6\right\}\)

\(ĐK:x\ne\pm2\)

Đặt \(\frac{x+3}{x-2}=a,\frac{x-3}{x+2}=b\)

\(PT\Leftrightarrow a^2+6b^2-7ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}}\)

Đến đây nhân chéo rồi tìm nghiệm nhé :))))

10 tháng 2 2020

Bạn Linh linh oiii tui hong hiểu cách bạn giải :<

8 tháng 2 2020

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

22 tháng 4 2020

Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html

Mình cảm ơn trước nhaa

4 tháng 12 2018

\(\left\{{}\begin{matrix}\dfrac{x+3}{x-2}=a\\\dfrac{x-3}{x+2}=b\end{matrix}\right.\)

\(pt\Leftrightarrow a^2+6b^2-7ab=0\)

\(\Leftrightarrow a^2-ab+6b^2-6ab=0\)

\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=6b\\a=b\end{matrix}\right.\)

Tự full nhé bạn