\(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

Xét PT(1)

\(2x^2+y^2-3xy+3x-2y+1=0\)

\(\Leftrightarrow 2x^2-3x(y-1)+(y-1)^2=0\)

Đặt \(y-1=t\Rightarrow 2x^2-3xt+t^2=0\)

\(\Leftrightarrow (x-t)(2x-t)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-t=0\\2x-t=0\end{matrix}\right.\)

TH1: \(x-t=0\Leftrightarrow x=t=y-1\)

Thay vào PT(2)

\(\Rightarrow 4(y-1)^2-y^2+(y-1)+4=\sqrt{3y-2}+\sqrt{5y-1}\)

\(3y^2-7y+7=\sqrt{3y-2}+\sqrt{5y-1}\)

\(\Leftrightarrow 3(y^2-3y+2)=\sqrt{3y-2}-y+\sqrt{5y-1}-(y+1)\)

\(\Leftrightarrow 3(y^2-3y+2)=\frac{3y-2-y^2}{\sqrt{3y-2}+y}+\frac{3y-2-y^2}{\sqrt{5y-1}+y+1}\)

\(\Leftrightarrow (y^2-3y+2)\left[3+\frac{1}{\sqrt{3y-2}+y}+\frac{1}{\sqrt{5y-1}+y+1}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn lớn hơn 0. Do đó \(y^2-3y+2=0\Leftrightarrow y=1\) hoặc \(y=2\)

Kéo theo \(x=0\) hoặc x=1

TH2: \(2x=t=y-1\)

\(\Leftrightarrow y=2x+1\). Thay vào PT(2)

\(4x^2-(2x+1)^2+x+4=\sqrt{4x+1}+\sqrt{9x+4}\)

\(3-3x=\sqrt{4x+1}+\sqrt{9x+4}\)

\(\Leftrightarrow \sqrt{4x+1}-1+\sqrt{9x+4}-2+3x=0\)

\(\Leftrightarrow \frac{4x}{\sqrt{4x+1}+1}+\frac{9x}{\sqrt{9x+4}+2}+3x=0\)

\(\Leftrightarrow x\left(\frac{4}{\sqrt{4x+1}+1}+\frac{9}{\sqrt{9x+4}+2}+3\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0. Do đó x=0 kéo theo \(y=1\)

Vậy \((x,y)\in\left\{(0;1);(1;2)\right\}\)

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

NV
5 tháng 5 2019

a/ ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=a>0\)

\(\Rightarrow a^2=2x+2\sqrt{x^2-16}\)

Phương trình trở thành:

\(a=a^2-12\Leftrightarrow a^2-a-12=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)

\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)

\(\Leftrightarrow x^2-16=x^2-16x+64\)

\(\Rightarrow x=5\)

b/ \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+1}=a\\\sqrt{4x^2-2x+1}=b\end{matrix}\right.\) ta được:

\(a+3b=3+ab\)

\(\Leftrightarrow ab-a-\left(3b-3\right)=0\)

\(\Leftrightarrow a\left(b-1\right)-3\left(b-1\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=3\\\sqrt{4x^2-2x+1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=9\\4x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\\x=\frac{1}{2}\end{matrix}\right.\)

NV
5 tháng 5 2019

Bài 2:

a/ \(\left\{{}\begin{matrix}\left(x+2y\right)^2-4xy-5=0\\4xy\left(x+2y\right)+5\left(x+2y\right)-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2y\right)^2-\left(4xy+5\right)=0\\\left(4xy+5\right)\left(x+2y\right)-1=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+2y=a\\4xy+5=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2-b=0\\ab=1\end{matrix}\right.\) \(\Rightarrow a^2-\frac{1}{a}=0\Rightarrow a^3-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+2y=1\\4xy+5=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1-2y\\4y\left(1-2y\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1-2y\\-8y^2+4y+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-1\\y=-\frac{1}{2}\Rightarrow x=2\end{matrix}\right.\)

b/Cộng vế với vế:

\(17x^2-2\left(4y^2+1\right)x+y^4+1=0\)

\(\Delta'=\left(4y^2+1\right)^2-17\left(y^4+1\right)=-y^4+8y^2-16\)

\(\Delta'=-\left(y^2-4\right)^2\ge0\Rightarrow y^2-4=0\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

- Với \(y=2\) \(\Rightarrow x^2-2x+1=0\Rightarrow x=1\)

\(\)- Với \(y=-2\Rightarrow x^2-2x-7=0\Rightarrow x=1\pm2\sqrt{2}\)

4 tháng 3 2020

ĐKXĐ: \(\left\{{}\begin{matrix}2x+y\ge1\\x+2y\ge2\\x+4y\ge0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow\frac{\left(2x+y-1\right)-\left(x+2y-2\right)}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)

\(\Leftrightarrow\frac{x-y+1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+\left(x-y+1\right)=0\)\(\Leftrightarrow\left(x-y+1\right)\left(\frac{1}{\sqrt{2x+y-1}+\sqrt{x+2y-2}}+1\right)=0\)\(\Leftrightarrow x-y+1=0\)

Thế vào pt 2 => x;y

NV
4 tháng 3 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y-1}=a\ge0\\\sqrt{x+2y-2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x-y+1\)

Phương trình thứ nhất trở thành:

\(a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(1+a+b\right)=0\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{2x+y-1}=\sqrt{x+2y-2}\Rightarrow y=x+1\)

Thay xuống pt dưới:

\(4x^2-\left(x+1\right)^2+x+4-\sqrt{3x+1}-\sqrt{5x+4}=0\)

\(\Leftrightarrow3x^2-x+3-\sqrt{3x+1}-\sqrt{5x+4}=0\)

\(\Leftrightarrow3x^2-3x+x+1-\sqrt{3x+1}+x+2-\sqrt{5x+4}=0\)

\(\Leftrightarrow3x\left(x-1\right)+\frac{\left(x+1\right)^2-\left(3x+1\right)}{x+1+\sqrt{3x+1}}+\frac{\left(x+2\right)^2-\left(5x+4\right)}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow3x\left(x-1\right)+\frac{x\left(x-1\right)}{x+1+\sqrt{3x+1}}+\frac{x\left(x-1\right)}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow x\left(x-1\right)\left(3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right)=0\)

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

27 tháng 6 2019

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

27 tháng 6 2019

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm